- Browse by Subject
Browsing by Subject "Li ion battery"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions(Elsevier, 2017-04) Kang, Huixiao; Lim, Cheolwoong; Li, Tianyi; Fu, Yongzhu; Yan, Bo; Houston, Nicole; De Andrade, Vincent; De Carlo, Francesco; Zhu, Likun; Department of Mechanical Engineering, School of Engineering and TechnologyThe impact of calendering process on the geometric characteristics and electrochemical performance of LiNi1/3Mn1/3Co1/3O2 (NMC) electrode was investigated in this study. The geometric properties of NMC electrodes with different calendering conditions, such as porosity, pore size distribution, particle size distribution, specific surface area and tortuosity were calculated from the computed tomography data of the electrodes. A synchrotron transmission X-ray microscopy tomography system at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain the tomography data. The geometric and electrochemical analysis show that calendering can increase the electrochemically active area, which improves rate capability. However, more calendering will result in crushing of NMC particles, which can reduce the electrode capacity at relatively high C rates. This study shows that the optimum electrochemical performance of NMC electrode at 94:3:3 weight ratio of NMC:binder:carbon black can be achieved by calendering to 3.0 g/cm3 NMC density.Item Hard X-ray-induced damage on carbon–binder matrix for in situ synchrotron transmission X-ray microscopy tomography of Li-ion batteries(IUCR, 2017) Lim, Cheolwoong; Kang, Huixiao; De Andrade, Vincent; De Carlo, Francesco; Zhu, Likun; Mechanical Engineering, School of Engineering and TechnologyThe electrode of Li-ion batteries is required to be chemically and mechanically stable in the electrolyte environment for in situ monitoring by transmission X-ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire-shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X-ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X-ray dose is the key factor of radiation damage. For in situ TXM tomography, intermittent X-ray exposure during image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.Item Model-Based Adaptive Fault Diagnosis in Lithium Ion Batteries: A Comparison of Linear and Nonlinear Approaches(SAE, 2017) Sidhu, Amardeep; Izadian, Afshin; Anwar, Sohel; Mechanical Engineering, School of Engineering and TechnologyIn this paper, multiple-model adaptive estimation techniques have been successfully applied to fault detection and identification in lithium-ion batteries. The diagnostic performance of a battery depends greatly on the modeling technique used in representing the system and the associated faults under investigation. Here, both linear and non-linear battery modeling techniques are evaluated and the effects of battery model and noise estimation on the over-charge and over-discharge fault diagnosis performance are studied. Based on the experimental data obtained under the same fault scenarios for a single cell, the non-linear model based detection method is found to perform much better in accurately detecting the faults in real time when compared to those using linear model based method.