- Browse by Subject
Browsing by Subject "Left atrial appendage occlusion"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation(Elsevier, 2024) Joglar, José A.; Chung, Mina K.; Armbruster, Anastasia L.; Benjamin, Emelia J.; Chyou, Janice Y.; Cronin, Edmond M.; Deswal, Anita; Eckhardt, Lee L.; Goldberger, Zachary D.; Gopinathannair, Rakesh; Gorenek, Bulent; Hess, Paul L.; Hlatky, Mark; Hogan, Gail; Ibeh, Chinwe; Indik, Julia H.; Kido, Kazuhiko; Kusumoto, Fred; Link, Mark S.; Linta, Kathleen T.; Marcus, Gregory M.; McCarthy, Patrick M.; Patel, Nimesh; Patton, Kristen K.; Perez, Marco V.; Piccini, Jonathan P.; Russo, Andrea M.; Sanders, Prashanthan; Streur, Megan M.; Thomas, Kevin L.; Times, Sabrina; Tisdale, James E.; Valente, Anne Marie; Van Wagoner, David R.; Pharmacology and Toxicology, School of MedicineAim: The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. Methods: A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. Structure: Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.Item Five-Year Outcomes and Cardiac Remodeling Following Left Atrial Appendage Occlusion(Dovepress, 2021-04-19) Liu, Baoxin; Luo, Jiachen; Gong, Mengmeng; Li, Zhiqiang; Shi, Beibei; Zhang, Xingxu; Han, Xinqiang; Wei, Yidong; Medicine, School of MedicinePurpose: LAAO has been an alternative therapy to oral anticoagulants (OACs) for stroke prophylaxis in patients with nonvalvular atrial fibrillation (NVAF) with elevated CHA2DS2-Vasc score, but the long-term outcomes of LAAO and its impacts on cardiac electrical and mechanical remodeling remain to be learned. We aimed to describe the impact of left atrial appendage occlusion (LAAO) on atrial remodeling and cardiovascular outcomes within 5-year follow-up. Patients and methods: A total of 107 patients with nonvalvular atrial fibrillation (NVAF) undergoing LAAO in the Shanghai Tenth People's Hospital between January 2014 and July 2017 were included. All participants were followed for ECG, transthoracic echocardiography (TTE), and clinical outcomes (including cardiovascular death, heart failure, ischemic stroke/systemic embolism, and pericardial effusion) at 6 and 12 months, and thereafter every 12 months after LAAO discharge until 5 years. Results: After LAAO, the left atrial diameter significantly increased at 6 months (48.6 ± 6.7 vs 46.5 ± 7.0 mm); heart rate decreased immediately after the procedure (78.5 ± 14.7 vs 85.3 ± 21.7 bpm) when compared with the pre-procedure level. The QTc interval prolongated to the highest value of 460.7 ± 46.8 ms at 6 months (pre-procedure level of 433.7±49.0 ms). All these changes return to the pre-procedure level within the follow-up. For clinical outcomes, 51 patients suffered the composite of cardiovascular death (n=4, 3.7%), heart failure (n=25, 23.4%), ischemic stroke/systemic embolism (n=22, 20.6%), and pericardial effusion (n=26, 26.2%). Conclusion: LAAO did not change ECG or TTE characteristics and nonprocedure-related pericardial effusion is common during long-term follow-up. Further studies are warranted to investigate the optimal time frame of anticoagulation in patients undergoing LAAO.Item Percutaneous Left Atrial Appendage Occlusion Therapy: Evolution and Growing Evidence(IMR Press, 2023-07-19) Han, Xinqiang; Benditt, David G.; Medicine, School of MedicineAtrial fibrillation (AF) is the most common cardiac arrhythmia and if untreated, significantly increases both the risk of intracardiac thrombus formation and ischemic stroke. In patients with nonvalvular AF (NVAF), the left atrial appendage (LAA) has been estimated to be the source of thrombus development in 91% to 99% of cases. Consequently, oral anticoagulation (OAC) to provide stroke prevention has become the standard of care for most AF patients; however, OACs are associated with a risk of bleeding and their efficacy depends on optimal patient compliance. In terms of alternative approaches to preventing embolic events, surgical LAA excision was attempted as early as in the late 1940s in patients with valvular AF; LAA excision remains a recommendation in surgical guidelines for NVAF patients who need open-heart coronary bypass or valvular replacement/repair surgeries. However, due to its invasive nature surgical LAA intervention has limited clinical application in present cardiology practice. Percutaneous LAA occlusion (LAAO) is increasingly being performed as an alternative to OAC for stroke prevention; this is particularly the case in patients at increased bleeding risk. Substantial progress has been made in percutaneous LAAO therapy since its inception some twenty years ago. Herein we systematically review both the critical literature that led to the development of LAAO, and the increasing clinical evidence supporting the application of this treatment strategy in NVAF. To this end we focus on recently published critical evaluations of United States Food and Drug Administration (US FDA) and Conformité Européenne (Commercial Sale of Licensed Product in the EU) (CE-Mark) approved LAAO devices, summarize the current status of LAAO therapy, and discuss the future perspectives regarding the knowledge and technology gaps in this area by recognizing the potential contributions of many ongoing but likely transformative clinical trials.