ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Lectins, C-Type"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cellular metabolism constrains innate immune responses in early human ontogeny
    (Nature Research, 2018-11-16) Kan, Bernard; Michalski, Christina; Fu, Helen; Au, Hilda H.T.; Lee, Kelsey; Marchant, Elizabeth A.; Cheng, Maye F.; Anderson-Baucum, Emily; Aharoni-Simon, Michal; Tilley, Peter; Mirmira, Raghavendra G.; Ross, Colin J.; Luciani, Dan S.; Jan, Eric; Lavoie, Pascal M.; Medicine, School of Medicine
    Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny.
  • Loading...
    Thumbnail Image
    Item
    IL-9 by INFERence
    (Elsevier, 2013-10-17) Zhou, Baohua; Kaplan, Mark H.; Department of Pediatrics, IU School of Medicine
    Despite discovery of the cytokine over 20 years ago, the relevant biological sources of IL-9 have remained a mystery. In this issue of Immunity, Licona-Limón et al. (2013) use a newly generated reporter mouse to demonstrate a role for IL-9-secreting T cells in helminthic parasite immunity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University