ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Lebesgue covering dimension"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Nonlinear spectrums of Finsler manifolds
    (Springer, 2022-01) Kristály, Alexandru; Shen, Zhongmin; Yuan, Lixia; Zhao, Wei; Mathematical Sciences, School of Science
    In this paper we investigate the spectral problem in Finsler geometry. Due to the nonlinearity of the Finsler–Laplacian operator, we introduce faithful dimension pairs by means of which the spectrum of a compact reversible Finsler metric measure manifold is defined. Various upper and lower bounds of such eigenvalues are provided in the spirit of Cheng, Buser and Gromov, which extend in several aspects the results of Hassannezhad, Kokarev and Polterovich. Moreover, we construct several faithful dimension pairs based on Lusternik–Schnirelmann category, Krasnoselskii genus and essential dimension, respectively; however, we also show that the Lebesgue covering dimension pair is not faithful. As an application, we show that the Bakry–Émery spectrum of a closed weighted Riemannian manifold can be characterized by the faithful Lusternik–Schnirelmann dimension pair.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University