- Browse by Subject
Browsing by Subject "Lactoferrin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Antibacterial and Anti-biofilm Activity of the Human Breast Milk Glycoprotein Lactoferrin against Group B Streptococcus(Wiley, 2021) Lu, Jacky; Francis, Jamisha D.; Guevara, Miriam A.; Doster, Ryan S.; Eastman, Alison J.; Rogers, Lisa M.; Noble, Kristin N.; Manning, Shannon D.; Damo, Steven M.; Aronoff, David M.; Townsend, Steven D.; Gaddy, Jennifer A.; Medicine, School of MedicineGroup B Streptococcus (GBS) is an encapsulated Gram-positive human pathogen that causes invasive infections in pregnant hosts and neonates, as well as immunocompromised individuals. Colonization of the human host requires the ability to adhere to mucosal surfaces and circumnavigate the nutritional challenges and antimicrobial defenses associated with the innate immune response. Biofilm formation is a critical process to facilitate GBS survival and establishment of a replicative niche in the vertebrate host. Previous work has shown that the host responds to GBS infection by producing the innate antimicrobial glycoprotein lactoferrin, which has been implicated in repressing bacterial growth and biofilm formation. Additionally, lactoferrin is highly abundant in human breast milk and could serve a protective role against invasive microbial pathogens. This study demonstrates that human breast milk lactoferrin has antimicrobial and anti-biofilm activity against GBS and inhibits its adherence to human gestational membranes. Together, these results indicate that human milk lactoferrin could be used as a prebiotic chemotherapeutic strategy to limit the impact of bacterial adherence and biofilm formation on GBS-associated disease outcomes.Item Effect of Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula on Gut Microbiome and Metabolome at 4 Months of Age(Oxford University Press, 2021-04-02) Chichlowski, Maciej; Bokulich, Nicholas; Harris, Cheryl L.; Wampler, Jennifer L.; Li, Fei; Berseth, Carol Lynn; Rudolph, Colin; Wu, Steven S.; Pediatrics, School of MedicineBackground: Milk fat globule membrane (MFGM) and lactoferrin (LF) are human-milk bioactive components demonstrated to support gastrointestinal and immune development. Significantly fewer diarrhea and respiratory-associated adverse events through 18 mo of age were previously reported in healthy term infants fed a cow-milk-based infant formula with an added source of bovine MFGM and bovine LF through 12 mo of age. Objectives: The aim was to compare microbiota and metabolite profiles in a subset of study participants. Methods: Stool samples were collected at baseline (10-14 d of age) and day 120. Bacterial community profiling was performed via 16S rRNA gene sequencing and alpha and beta diversity were analyzed (QIIME 2). Differentially abundant taxa were determined using linear discriminant analysis effect size (LefSE) and visualized (Metacoder). Untargeted stool metabolites were analyzed (HPLC/MS) and expressed as the fold-change between group means (control to MFGM+LF ratio). Results: Alpha diversity increased significantly in both groups from baseline to 4 mo. Subtle group differences in beta diversity were demonstrated at 4 mo (Jaccard distance; R 2 = 0.01, P = 0.042). Specifically, Bacteroides uniformis and Bacteroides plebeius were more abundant in the MFGM+LF group at 4 mo. Metabolite profile differences for MFGM+LF versus control included lower fecal medium-chain fatty acids, deoxycarnitine, and glycochenodeoxycholate, and some higher fecal carbohydrates and steroids (P < 0.05). After applying multiple test correction, the differences in stool metabolomics were not significant. Conclusions: Addition of bovine MFGM and LF in infant formula was associated with subtle differences in stool microbiome and metabolome by 4 mo of age, including increased prevalence of Bacteroides species. Stool metabolite profiles may be consistent with altered microbial metabolism.