- Browse by Subject
Browsing by Subject "LS-DYNA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Numerical Modelling and Experimental Investigation of CFRP Structures for Large Deformations(2019-08) Deshpande, Archit M.; Dalir, Hamid; Agarwal, Mangilal; Tovar, AndresThe use of carbon-fiber reinforced composite materials is not novel in the field of motorsports industry. Their use in collapsible structures for crashworthiness is however not fully understood and predicted. Due to the complex failure mechanisms occurring within the material, the energy absorbing capacity cannot be easily pre dicted. The need to understand their contributions in crashworthy structures is thus of great importance. Furthermore, failure of carbon-fiber composites is highly depen dent on the geometry of structure. Problems arise in both experimental and numerical modelling of these structures. Although many explicit FEA codes exist, they often include experimental parameters that need to be calibrated through either coupon tests or actual crash tests. As composite structures become more commonly used in automotive industry, it is necessary to set some guidelines to successfully model and simulate composite crashworthy structures. The numerical modelling was done in LS-DYNA Enhanced composite damage MAT54. The material properties were configured using experimental coupon tests. The tests were conducted on square composite tubes. The Specific Energy Absorption (SEA) of the tubes were calculated through several coupons. As SEA is a function of geometry, it was necessary to conduct tests with similar geometry as seen in nosecone. MAT54 was chosen to simulate both crush and crash simulations due to its capability to simulate element level crushing. Furthermore, various modifications within the material model, improve its accuracy to determine composite failure. The research utilizes the characterization of material inputs in MAT54 by con ducting quasi-static compression tests on simpler but similar geometry. By utilizing inputs, a zonal optimization was conducted on the nosecone geometry. The number of layers, layer orientations and ply thicknesses were varied to vary the energy absorbed per zone. The deceleration of the vehicle can thus be controlled, and the weight of the structure could be reduced.Item Surrogate-based global optimization of composite material parts under dynamic loading(2017-08) Valladares Guerra, Homero Santiago; Tovar, Andres; Jones, Alan; Anwar, SohelThe design optimization of laminated composite structures is of relevance in automobile, naval, aerospace, construction and energy industry. While several optimization methods have been applied in the design of laminated composites, the majority of those methods are only applicable to linear or simplified nonlinear models that are unable to capture multi-body contact. Furthermore, approaches that consider composite failure still remain scarce. This work presents an optimization approach based on design and analysis of computer experiments (DACE) in which smart sampling and continuous metamodel enhancement drive the design process towards a global optimum. Kriging metamodel is used in the optimization algorithm. This metamodel enables the definition of an expected improvement function that is maximized at each iteration in order to locate new designs to update the metamodel and find optimal designs. This work uses explicit finite element analysis to study the crash behavior of composite parts that is available in the commercial code LS-DYNA. The optimization algorithm is implemented in MATLAB. Single and multi-objective optimization problems are solved in this work. The design variables considered in the optimization include the orientation of the plies as well as the size of zones that control the collapse of the composite parts. For the ease of manufacturing, the fiber orientation is defined as a discrete variable. Objective functions such as penetration, maximum displacement and maximum acceleration are defined in the optimization problems. Constraints are included in the optimization problem to guarantee the feasibility of the solutions provided by the optimization algorithm. The results of this study show that despite the brittle behavior of composite parts, they can be optimized to resist and absorb impact. In the case of single objective problems, the algorithm is able to find the global solution. When working with multi-objective problems, an enhanced Pareto is provided by the algorithm.