ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "LOXL2"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    miR-29a Is Repressed by MYC in Pancreatic Cancer and Its Restoration Drives Tumor-Suppressive Effects via Downregulation of LOXL2
    (American Association for Cancer Research, 2020-02-01) Dey, Shatovisha; Kwon, Jason J.; Liu, Sheng; Hodge, Gabriel A.; Taleb, Solaema; Zimmers, Teresa A.; Wan, Jun; Kota, Janaiah; Medical and Molecular Genetics, School of Medicine
    Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer with a dismal prognosis. MicroRNA-29a (miR-29a) is commonly downregulated in PDAC, however, mechanisms for its loss and role still remain unclear. Here we show that in PDAC, repression of miR-29a is directly mediated by MYC via promoter activity. RNA-seq analysis, integrated with miRNA target prediction, identified global miR-29a downstream targets in PDAC. Target enrichment coupled with gene ontology and survival correlation analyses identified the top five miR-29a downregulated target genes (LOXL2, MYBL2, CLDN1, HGK and NRAS) that are known to promote tumorigenic mechanisms. Functional validation confirmed that upregulation of miR-29a is sufficient to ablate translational expression of these five genes in PDAC. We show that the most promising target among the identified genes, LOXL2, is repressed by miR-29a via 3’-UTR binding. Pancreatic tissues from a PDAC murine model and patient biopsies showed overall high LOXL2 expression with inverse correlations with miR-29a levels. Collectively, our data delineate an anti-tumorigenic, regulatory role of miR-29a, and a novel MYC-miR-29a-LOXL2 regulatory axis in PDAC pathogenesis, indicating the potential of the molecule in therapeutic opportunities. Implications This study unravels a novel functional role of miR-29a in PDAC pathogenesis, and identifies a MYC-miR-29a-LOXL2 axis in regulation of the disease progression, implicating miR-29a as a potential therapeutic target for PDAC.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University