- Browse by Subject
Browsing by Subject "L-2-hydroxyglutarate"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The oncometabolite L-2-hydroxyglutarate is a common product of dipteran larval development(Elsevier, 2020-12) Mahmoudzadeh, Nader H.; Fitt, Alexander J.; Schwab, Daniel B.; Martenis, William E.; Nease, Lauren M.; Owings, Charity G.; Brinkley, Garrett J.; Li, Hongde; Karty, Jonathan A.; Sudarshan, Sunil; Hardy, Richard W.; Moczek, Armin P.; Picard, Christine J.; Tennessen, Jason M.; Biology, School of ScienceThe oncometabolite L-2-hydroxyglutarate (L-2HG) is considered an abnormal product of central carbon metabolism that is capable of disrupting chromatin architecture, mitochondrial metabolism, and cellular differentiation. Under most circumstances, mammalian tissues readily dispose of this compound, as aberrant L-2HG accumulation induces neurometabolic disorders and promotes renal cell carcinomas. Intriguingly, Drosophila melanogaster larvae were recently found to accumulate high L-2HG levels under normal growth conditions, raising the possibility that L-2HG plays a unique role in insect metabolism. Here we explore this hypothesis by analyzing L-2HG levels in 18 insect species. While L-2HG was present at low-to-moderate levels in most of these species (<100 pmol/mg; comparable to mouse liver), dipteran larvae exhibited a tendency to accumulate high L-2HG concentrations (>100 pmol/mg), with the mosquito Aedes aegypti, the blow fly Phormia regina, and three representative Drosophila species harboring concentrations that exceed 1 nmol/mg - levels comparable to those measured in mutant mice that are unable to degrade L-2HG. Overall, our findings suggest that one of the largest groups of animals on earth commonly generate high concentrations of an oncometabolite during juvenile growth, hint at a role for L-2HG in the evolution of dipteran development, and raise the possibility that L-2HG metabolism could be targeted to restrict the growth of key disease vectors and agricultural pests.Item Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster(Elsevier, 2024) Mahmoudzadeh, Nader H.; Heidarian, Yasaman; Tourigny, Jason P.; Fitt, Alexander J.; Beebe, Katherine; Li, Hongde; Luhur, Arthur; Buddika, Kasun; Mungcal, Liam; Kundu, Anirban; Policastro, Robert A.; Brinkley, Garrett J.; Zentner, Gabriel E.; Nemkov, Travis; Pepin, Robert; Chawla, Geetanjali; Sudarshan, Sunil; Rodan, Aylin R.; D’Alessandro, Angelo; Tennessen, Jason M.; Medicine, School of MedicineObjectives: The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh. Methods: L2hgdh mutant adult male flies were analyzed under normoxic and hypoxic conditions using a combination of semi-targeted metabolomics and RNA-seq. These multi-omic analyses were complemented by tissue-specific genetic studies that examined the effects of L2hgdh mutations on the Drosophila renal system (Malpighian tubules; MTs). Results: Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation. Conclusions: These findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.