ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Knowledge bases"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evaluating and Extending the Informed Consent Ontology for Representing Permissions from the Clinical Domain
    (IOS Press, 2022) Umberfield, Elizabeth E.; Stansbury, Cooper; Ford, Kathleen; Jiang, Yun; Kardia, Sharon L.R.; Thomer, Andrea K.; Harris, Marcelline R.; Health Policy and Management, School of Public Health
    The purpose of this study was to evaluate, revise, and extend the Informed Consent Ontology (ICO) for expressing clinical permissions, including reuse of residual clinical biospecimens and health data. This study followed a formative evaluation design and used a bottom-up modeling approach. Data were collected from the literature on US federal regulations and a study of clinical consent forms. Eleven federal regulations and fifteen permission-sentences from clinical consent forms were iteratively modeled to identify entities and their relationships, followed by community reflection and negotiation based on a series of predetermined evaluation questions. ICO included fifty-two classes and twelve object properties necessary when modeling, demonstrating appropriateness of extending ICO for the clinical domain. Twenty-six additional classes were imported into ICO from other ontologies, and twelve new classes were recommended for development. This work addresses a critical gap in formally representing permissions clinical permissions, including reuse of residual clinical biospecimens and health data. It makes missing content available to the OBO Foundry, enabling use alongside other widely-adopted biomedical ontologies. ICO serves as a machine-interpretable and interoperable tool for responsible reuse of residual clinical biospecimens and health data at scale.
  • Loading...
    Thumbnail Image
    Item
    The Polygenic Risk Score Knowledge Base offers a centralized online repository for calculating and contextualizing polygenic risk scores
    (Springer Nature, 2022-09-02) Page, Madeline L.; Vance, Elizabeth L.; Cloward, Matthew E.; Ringger, Ed; Dayton, Louisa; Ebbert, Mark T. W.; Alzheimer’s Disease Neuroimaging Initiative; Miller, Justin B.; Kauwe, John S. K.; Radiology and Imaging Sciences, School of Medicine
    The process of identifying suitable genome-wide association (GWA) studies and formatting the data to calculate multiple polygenic risk scores on a single genome can be laborious. Here, we present a centralized polygenic risk score calculator currently containing over 250,000 genetic variant associations from the NHGRI-EBI GWAS Catalog for users to easily calculate sample-specific polygenic risk scores with comparable results to other available tools. Polygenic risk scores are calculated either online through the Polygenic Risk Score Knowledge Base (PRSKB; https://prs.byu.edu ) or via a command-line interface. We report study-specific polygenic risk scores across the UK Biobank, 1000 Genomes, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), contextualize computed scores, and identify potentially confounding genetic risk factors in ADNI. We introduce a streamlined analysis tool and web interface to calculate and contextualize polygenic risk scores across various studies, which we anticipate will facilitate a wider adaptation of polygenic risk scores in future disease research.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University