- Browse by Subject
Browsing by Subject "Klotho"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Age and sex effects on FGF23-mediated response to mild phosphate challenge(Elsevier, 2021) Tippen, Samantha P.; Noonan, Megan L.; Ni, Pu; Metzger, Corinne E.; Swallow, Elizabeth A.; Sacks, Spencer A.; Chen, Neal X.; Thompson, William R.; Prideaux, Matthew; Atkins, Gerald J.; Moe, Sharon M.; Allen, Matthew R.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineBackground: During aging, there is a normal and mild loss in kidney function that leads to abnormalities of the kidney-bone metabolic axis. In the setting of increased phosphorus intake, hyperphosphatemia can occur despite increased concentrations of the phosphaturic hormone FGF23. This is likely from decreased expression of the FGF23 co-receptor Klotho (KL) with age; however, the roles of age and sex in the homeostatic responses to mild phosphate challenges remain unclear. Methods: Male and female 16-week and 78-week mice were placed on either normal grain-based chow or casein (higher bioavailable phosphate) diets for 8 weeks. Gene expression, serum biochemistries, micro-computed tomography, and skeletal mechanics were used to assess the impact of mild phosphate challenge on multiple organ systems. Cell culture of differentiated osteoblast/osteocytes was used to test mechanisms driving key outcomes. Results: Aging female mice responded to phosphate challenge by significantly elevating serum intact FGF23 (iFGF23) versus control diet; males did not show this response. Male mice, regardless of age, exhibited higher kidney KL mRNA with similar phosphate levels across both sexes. However, males and females had similar blood phosphate, calcium, and creatinine levels irrespective of age, suggesting that female mice upregulated FGF23 to maintain blood phosphorus, and compromised renal function could not explain the increased serum iFGF23. The 17β-estradiol levels were not different between groups, and in vivo bone steroid receptor (estrogen receptor 1 [Esr1], estrogen receptor 2 [Esr2], androgen receptor [Ar]) expression was not different by age, sex, or diet. Trabecular bone volume was higher in males but decreased with both age and phosphate challenge in both sexes. Cortical porosity increased with age in males but not females. In vitro studies demonstrated that 17β-estradiol treatment upregulated FGF23 and Esr2 mRNAs in a dose-dependent manner. Conclusions: Our study demonstrates that aging female mice upregulate FGF23 to a greater degree during a mild phosphate challenge to maintain blood phosphorus versus young female and young/old male mice, potentially due to direct estradiol effects on osteocytes. Thus, the control of phosphate intake during aging could have modifiable outcomes for FGF23-related phenotypes.Item Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification(American Heart Association, 2016-07) Gomez-Stallons, M. Victoria; Wirrig-Schwendeman, Elaine E.; Hassel, Keira R.; Conway, Simon J.; Yutzey, Katherine E.; Pediatrics, School of MedicineOBJECTIVE: Calcific aortic valve disease (CAVD) is the most prevalent type of heart valve disease, affecting ≈2% of the US population. CAVD is characterized by the presence of calcific nodules, resulting in aortic valve (AoV) stenosis; however, the underlying mechanisms driving disease remain unknown. Studies of human diseased AoV provide initial evidence that bone morphogenetic protein (BMP) signaling, essential for normal bone formation, is activated during CAVD. Mice deficient in Klotho, an FGF23 transmembrane coreceptor, exhibit premature aging and develop AoV calcific nodules as occurs in human CAVD. The role of BMP signaling in the development of CAVD was examined in porcine aortic valve interstitial cells (VICs) and Klotho(-/-) mice. APPROACH AND RESULTS: We show that activation of BMP signaling, as indicated by pSmad1/5/8 expression, precedes and later localizes with AoV calcification in Klotho(-/-) mice. In addition, cellular and extracellular matrix changes resembling features of normal bone formation are accompanied by increased osteochondrogenic gene induction in calcified Klotho(-/-) AoV. Likewise, osteogenic media treatment of porcine VICs results in BMP pathway activation, increased osteochondrogenic gene induction, and formation of calcific nodules in vitro. We demonstrate that genetic inactivation of the BMP type IA receptor in Klotho(-/-) aortic VICs, as well as BMP pathway inhibition of osteogenic media-treated aortic VICs in vitro, results in the inhibition of AoV calcification. CONCLUSIONS: BMP signaling and osteochondrogenic gene induction are active in calcified Klotho(-/-) AoV in vivo and calcified porcine aortic VICs in vitro. Importantly, BMP signaling is required for the development of AoV calcification in vitro and in vivo.Item Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia(Wiley, 2016-06) Clinkenbeard, Erica L.; Cass, Taryn A.; Ni, Pu; Hum, Julia M.; Bellido, Teresita; Allen, Matthew R.; White, Kenneth E.; Department of Medical and Molecular Genetics, School of MedicineThe transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed ("f")-Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global-Cre transgenic mice (eIIa-cre). Mice homozygous for the recombined allele ("Δ") had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23-KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23(Δ/f) mice were mated with early osteoblast type Iα1 collagen 2.3-kb promoter-cre mice (Col2.3-cre) and the late osteoblast/early osteocyte Dentin matrix protein-1-cre (Dmp1-cre). Fgf23(Δ/f) /Col2.3-cre(+) and Fgf23(Δ/f) /Dmp1-cre(+) exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high-phosphate diet Cre(-) mice had 2.1-fold to 2.5-fold increased serum FGF23 (p < 0.01), but Col2.3-cre(+) mice had no significant increase, and Dmp1-cre(+) mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23(Δ/f) /Col2.3-cre was bred onto the Hyp (murine X-linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23(Δ/f) /Col2.3-cre(+) mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome.Item FGF23 and Associated Disorders of Phosphate Wasting(YS Medical Media, 2019-09-01) Gohil, Anisha; Imel, Erik A.; Pediatrics, School of MedicineFibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated disorders of renal phosphate wasting share similar clinical and biochemical features. The most common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.Item FGF23, Hypophosphatemia, and Emerging Treatments(Wiley, 2019) Imel, Erik A.; Biggin, Andrew; Schindeler, Aaron; Munns, Craig; Pediatrics, School of MedicineFGF23 is an important hormonal regulator of phosphate homeostasis. Together with its co‐receptor Klotho, it modulates phosphate reabsorption and both 1α‐hydroxylation and 24‐hydroxylation in the renal proximal tubules. The most common FGF23‐mediated hypophosphatemia is X‐linked hypophosphatemia (XLH), caused by mutations in the PHEX gene. FGF23‐mediated forms of hypophosphatemia are characterized by phosphaturia and low or low‐normal calcitriol concentrations, and unlike nutritional rickets, these cannot be cured with nutritional vitamin D supplementation. Autosomal dominant and autosomal recessive forms of FGF23‐mediated hypophosphatemias show a similar pathophysiology, despite a variety of different underlying genetic causes. An excess of FGF23 activity has also been associated with a number of other conditions causing hypophosphatemia including tumor‐induced osteomalacia, fibrous dysplasia of the bone, and cutaneous skeletal hypophosphatemia syndrome. Historically phosphate supplementation and therapy using analogs of highly‐active vitamin D (e.g. calcitriol, alfacalcidol, paracalcitol, eldecalcitol) have been used to manage conditions involving hypophosphatemia, however recently a neutralizing antibody for FGF23 (burosumab) has emerged as a promising treatment agent for FGF23‐mediated disorders. This review discusses the progression of clinical trials for burosumab for the treatment of XLH and its recent availability for clinical use. Burosumab may have potential for treating other conditions associated with FGF23 over‐activity, but these are not yet supported by trial data.Item Heritable and acquired disorders of phosphate metabolism: Etiologies involving FGF23 and current therapeutics(Elsevier, 2017-09) Clickenbeard, Erica L.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicinePhosphate is critical for many cellular processes and structural functions, including as a key molecule for nucleic acid synthesis and energy metabolism, as well as hydroxyapatite formation in bone. Therefore it is critical to maintain tight regulation of systemic phosphate levels. Based upon its broad biological importance, disruption of normal phosphate homeostasis has detrimental effects on skeletal integrity and overall health. Investigating heritable diseases of altered phosphate metabolism has led to key discoveries underlying the regulation and systemic actions of the phosphaturic hormone Fibroblast growth factor-23 (FGF23). Both molecular and clinical studies have revealed novel targets for the development and optimization of therapies for disorders of phosphate handling. This review will focus upon the bridge between genetic discoveries involving disorders of altered FGF23 bioactivity, as well as describe how these findings have translated into pharmacologic application.Item Identification of a second Klotho interaction site in the C terminus of FGF23(Elsevier, 2021) Agrawal, Archita; Ni, Pu; Agoro, Rafiou; White, Kenneth E.; DiMarchi, Richard D.; Medical and Molecular Genetics, School of MedicineFGF23 interacts with a FGFR/KL-receptor complex to propagate cellular signaling, where its C-terminal C26 peptide is critical for engaging the co-receptor KL. We identify a distinct peptide sequence C28 residing in the FGF23 C terminus that regulates its interaction with KL. C28 can independently function as an FGF23 antagonist, and we report an optimized peptide antagonist of much enhanced potency. FGF23 can use either of the two C-terminal sites to exert biological effects, as shown by in vitro and in vivo studies. The loss of both KL-interaction sites inactivates the protein. We conclude that the C terminus of FGF23 is a bidentate ligand possessing two independent KL-interaction sites. The identification of this second KL-association site provides an additional perspective in the molecular basis of FGF23-receptor signaling and raises questions pertaining to its structural mechanism of action and the potential for biased biological signaling.Item IMMUNOHISTOCHEMISTRY EXPRESSION OF KLOTHO IN BONE MARROW BIOPSIES FROM NORMAL, MGUS, AND PLASMA CELL MYELOMA(Office of the Vice Chancellor for Research, 2012-04-13) Parker, Jamie; Temm, Constance J.; Chirgwin, Jon; Suvannasankha, Attaya; Imel, Erik; Sandusky, GeorgeKlotho is an anti-aging gene, which has been shown to inhibit the insulin and insulin-like growth factor 1 (IGF-1) pathways in mice hepatocytes and myocytes. Immunochemistry analysis of Klotho expression in breast tissue arrays revealed high expression in normal breast, but very low expression in breast cancer. In this study we examined eight normal bone marrow, eight MGUS (monoclonal gammopathy of undetermined significance), and forty-two cases of plasma cell myeloma by immunohistochemistry with the Klotho antibody. The immunostaining of the Klotho antibody was localized in the cyto-plasm and as punctate granular staining of myeloma cells in the marrow. In the accompanying bone marrow clots, Klotho was seen as strong punctate granules on myeloma cells and not on other peripheral white blood cells. There was no staining of plasma cells in the eight normal bone marrow cas-es. Slight cytoplasmic staining was seen in myeloid series of cells in the normal bone marrow and in megakaryocytes. In the eight MGUS cases, there was very minimal cytoplasmic staining in a few of the myeloma cells. Minimal staining was seen in the myeloid series of cells in the marrow in these cases. Klotho was highly expressed in the myeloma cases and no staining in the normal and MGUS cases. In conclusion, Klotho was highly expressed in patients with myeloma in myelomas cells in the bone marrow. This project was sponsored by the Life Health Science Internship ProgramItem Klotho and the Treatment of Human Malignancies(MDPI, 2020-06-23) Sachdeva, Aishani; Gouge, Jerome; Kontovounisios, Christos; Nikolaou, Stella; Ashworth, Alan; Lim, Kenneth; Chong, Irene; Medicine, School of MedicineKlotho was first discovered as an anti-ageing protein linked to a number of age-related disease processes, including cardiovascular, renal, musculoskeletal, and neurodegenerative conditions. Emerging research has also demonstrated a potential therapeutic role for Klotho in cancer biology, which is perhaps unsurprising given that cancer and ageing share similar molecular hallmarks. In addition to functioning as a tumour suppressor in numerous solid tumours and haematological malignancies, Klotho represents a candidate therapeutic target for patients with these diseases, the majority of whom have limited treatment options. Here, we examine contemporary evidence evaluating the anti-neoplastic effects of Klotho and describe the modulation of downstream oncogenic signalling pathways, including Wnt/β-catenin, FGF, IGF1, PIK3K/AKT, TGFβ, and the Unfolded Protein Response. We also discuss possible approaches to developing therapeutic Klotho and consider technological advances that may facilitate the delivery of Klotho through gene therapy.Item Klotho: An Emerging Factor With Ergogenic Potential(Frontiers, 2022-01) Arroyo, Eliott; Troutman, Ashley D.; Moorthi, Ranjani N.; Avin, Keith G.; Coggan, Andrew R.; Lim, Kenneth; Medicine, School of MedicineSarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.