ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Kidney tubules"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Human extracellular microvesicles from renal tubules reverse kidney ischemia-reperfusion injury in rats
    (PLOS, 2018-08-27) Dominguez II, James M.; Dominguez, Jesus H.; Xie, Danhui; Kelly, Katherine J.; Medicine, School of Medicine
    Hypoxic acute kidney injury, a major unresolved problem, initiates, or aggravates, renal functional and structural decline. There is no treatment for hypoxic acute renal injury and its sequelae. We tested the hypothesis that human kidney tubular cells, or their extracellular vesicles (exosomes), prevent renal injury when infused intravenously 24 hours after 50 minutes of bilateral renal ischemia in Nude rats. Cells and their exosomes were from harvested human kidneys declined for transplantation. Injections of either cells or exosomes, given after 24 and 48 hours of reperfusion, preserved renal function and structure in both treatment groups. However, exosomes were superior to cells; and maintained renal vascular and epithelial networks, prevented renal oxidant stress, and apoptosis; and restrained activation of pro-inflammatory and pro-fibrogenic pathways. Exosomes worked in 24 hours, consistent with functional rather than regenerative activity. Comprehensive proteomic analysis identified 6152 renal proteins from all cellular compartments; and 628 were altered by ischemia at all cell levels, while 377 were significantly improved by exosome infusions. We conclude that renal damage from severe ischemia was broad, and human renal exosomes prevented most protein alterations. Thus, exosomes seem to acutely correct a critical and consequential abnormality during reperfusion. In their absence, renal structure and cells transition to a chronic state of fibrosis and extensive renal cell loss.
  • Loading...
    Thumbnail Image
    Item
    OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome
    (Oxford University Press, 2012) Luo, Na; West, Callah C.; Murga-Zamalloa, Carlos A.; Sun, Lou; Anderson, Ryan M.; Wells, Clark D.; Weinreb, Robert N.; Travers, Jeffrey B.; Khanna, Hemant; Sun, Yang; Ophthalmology, School of Medicine
    Oculocerebral renal syndrome of Lowe (OCRL or Lowe syndrome), a severe X-linked congenital disorder characterized by congenital cataracts and glaucoma, mental retardation and kidney dysfunction, is caused by mutations in the OCRL gene. OCRL is a phosphoinositide 5-phosphatase that interacts with small GTPases and is involved in intracellular trafficking. Despite extensive studies, it is unclear how OCRL mutations result in a myriad of phenotypes found in Lowe syndrome. Our results show that OCRL localizes to the primary cilium of retinal pigment epithelial cells, fibroblasts and kidney tubular cells. Lowe syndrome-associated mutations in OCRL result in shortened cilia and this phenotype can be rescued by the introduction of wild-type OCRL; in vivo, knockdown of ocrl in zebrafish embryos results in defective cilia formation in Kupffer vesicles and cilia-dependent phenotypes. Cumulatively, our data provide evidence for a role of OCRL in cilia maintenance and suggest the involvement of ciliary dysfunction in the manifestation of Lowe syndrome.
  • Loading...
    Thumbnail Image
    Item
    Renal tubular handling of zinc
    (1985) Zimmerman, W. Brett
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University