- Browse by Subject
Browsing by Subject "Kidney function"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Measurement of glomerular filtration rate reveals that subcapsular injection of shear‐thinning hyaluronic acid hydrogels does not impair kidney function in mice(Wiley, 2022-03) Soranno, Danielle E.; Kirkbride-Romeo, Lara; Han, Daniel; Altmann, Christopher; Rodell, Christopher B.; Pediatrics, School of MedicineThe continued development of minimally invasive therapeutic implants, such as injectable hydrogels, necessitates the concurrent advancement of methods to best assess their biocompatibility via functional outcomes in vivo. Biomaterial implants have been studied to treat kidney disease; however, assessment of biocompatibility has been limited to biomarker and histological assessments. Techniques now exist to measure kidney function serially in vivo in murine studies via transcutaneous measurements of glomerular filtration rate (tGFR). In this study, adult male and female wild-type BalbC mice underwent right unilateral nephrectomy. The remaining solitary left kidney was allowed 4 weeks to recover via compensatory hypertrophy, after which subcapsular injection of either saline or shear-thinning hyaluronic acid hydrogel was performed. Serial tGFR measurements before and after treatment were used to assess the effect of hydrogel injection on kidney filtration. Urine and serum biomarkers of kidney function, and kidney histology were also quantified. Hydrogel injection did not affect kidney function, as assessed by tGFR. Results were in agreement with standard metrics of serum and urine biomarkers of injury as well as histological assessment of inflammation. The model developed provides a direct functional assessment of implant compatibility for the treatment of kidney disease and impact on kidney function.Item The Preserving Kidney Function in Children With CKD (PRESERVE) Study: Rationale, Design, and Methods(Elsevier, 2023-09-14) Denburg, Michelle R.; Razzaghi, Hanieh; Goodwin Davies, Amy J.; Dharnidharka, Vikas; Dixon, Bradley P.; Flynn, Joseph T.; Glenn, Dorey; Gluck, Caroline A.; Harshman, Lyndsay; Jovanovska, Aneta; Pefkaros Katsoufis, Chryso; Kratchman, Amy L.; Levondosky, Mark; Levondosky, Rebecca; McDonald, Jill; Mitsnefes, Mark; Modi, Zubin J.; Musante, Jordan; Neu, Alicia M.; Pan, Cynthia G.; Patel, Hiren P.; Patterson, Larry T.; Schuchard, Julia; Verghese, Priya S.; Wilson, Amy C.; Wong, Cynthia; Forrest, Christopher B.; Pediatrics, School of MedicineRationale & objective: PRESERVE seeks to provide new knowledge to inform shared decision-making regarding blood pressure (BP) management for pediatric chronic kidney disease (CKD). PRESERVE will compare the effectiveness of alternative strategies for monitoring and treating hypertension on preserving kidney function; expand the National Patient-Centered Clinical Research Network (PCORnet) common data model by adding pediatric- and kidney-specific variables and linking electronic health record data to other kidney disease databases; and assess the lived experiences of patients related to BP management. Study design: Multicenter retrospective cohort study (clinical outcomes) and cross-sectional study (patient-reported outcomes [PROs]). Setting & participants: PRESERVE will include approximately 20,000 children between January 2009-December 2022 with mild-moderate CKD from 15 health care institutions that participate in 6 PCORnet Clinical Research Networks (PEDSnet, STAR, GPC, PaTH, CAPRiCORN, and OneFlorida+). The inclusion criteria were ≥1 nephrologist visit and ≥2 estimated glomerular filtration rate (eGFR) values in the range of 30 to <90 mL/min/1.73 m2 separated by ≥90 days without an intervening value ≥90 mL/min/1.73 m2 and no prior dialysis or kidney transplant. Exposures: BP measurements (clinic-based and 24-hour ambulatory BP); urine protein; and antihypertensive treatment by therapeutic class. Outcomes: The primary outcome is a composite event of a 50% reduction in eGFR, eGFR of <15 mL/min/1.73 m2, long-term dialysis or kidney transplant. Secondary outcomes include change in eGFR, adverse events, and PROs. Analytical approach: Longitudinal models for dichotomous (proportional hazards or accelerated failure time) and continuous (generalized linear mixed models) clinical outcomes; multivariable linear regression for PROs. We will evaluate heterogeneity of treatment effect by CKD etiology and degree of proteinuria and will examine variation in hypertension management and outcomes based on socio-demographics. Limitations: Causal inference limited by observational analyses. Conclusions: PRESERVE will leverage the PCORnet infrastructure to conduct large-scale observational studies that address BP management knowledge gaps for pediatric CKD, focusing on outcomes that are meaningful to patients. Plain-language summary: Hypertension is a major modifiable contributor to loss of kidney function in chronic kidney disease (CKD). The purpose of PRESERVE is to provide evidence to inform shared decision-making regarding blood pressure management for children with CKD. PRESERVE is a consortium of 16 health care institutions in PCORnet, the National Patient-Centered Clinical Research Network, and includes electronic health record data for >19,000 children with CKD. PRESERVE will (1) expand the PCORnet infrastructure for research in pediatric CKD by adding kidney-specific variables and linking electronic health record data to other kidney disease databases; (2) compare the effectiveness of alternative strategies for monitoring and treating hypertension on preserving kidney function; and (3) assess the lived experiences of patients and caregivers related to blood pressure management.