- Browse by Subject
Browsing by Subject "Kartagener syndrome"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Accuracy of Nasal Nitric Oxide Measurement as a Diagnostic Test for Primary Ciliary Dyskinesia. A Systematic Review and Meta-analysis(American Thoracic Society, 2017-07) Shapiro, Adam J.; Josephson, Maureen; Rosenfeld, Margaret; Yilmaz, Ozge; Davis, Stephanie D.; Polineni, Deepika; Guadagno, Elena; Leigh, Margaret W.; Lavergne, Valery; Pediatrics, School of MedicineRATIONALE: Primary ciliary dyskinesia (PCD) is a rare disorder causing chronic otosinopulmonary disease, generally diagnosed through evaluation of respiratory ciliary ultrastructure and/or genetic testing. Nasal nitric oxide (nNO) measurement is used as a PCD screening test because patients with PCD have low nNO levels, but its value as a diagnostic test remains unknown. OBJECTIVES: To perform a systematic review to assess the utility of nNO measurement (index test) as a diagnostic tool compared with the reference standard of electron microscopy (EM) evaluation of ciliary defects and/or detection of biallelic mutations in PCD genes. DATA SOURCES: Ten databases were searched for reference sources from database inception through July 29, 2016. DATA EXTRACTION: Study inclusion was limited to publications with rigorous nNO index testing, reference standard diagnostic testing with EM and/or genetics, and calculable diagnostic accuracy information for cooperative patients (generally >5 yr old) with high suspicion of PCD. SYNTHESIS: Meta-analysis provided a summary estimate for sensitivity and specificity and a hierarchical summary receiver operating characteristic curve. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality, and Grading of Recommendations Assessment, Development, and Evaluation was used to assess the certainty of evidence. In 12 study populations (1,344 patients comprising 514 with PCD and 830 without PCD), using a reference standard of EM alone or EM and/or genetic testing, summary sensitivity was 97.6% (92.7-99.2) and specificity was 96.0% (87.9-98.7), with a positive likelihood ratio of 24.3 (7.6-76.9), a negative likelihood ratio of 0.03 (0.01-0.08), and a diagnostic odds ratio of 956.8 (141.2-6481.5) for nNO measurements. After studies using EM alone as the reference standard were excluded, the seven studies using an extended reference standard of EM and/or genetic testing showed a summary sensitivity of nNO measurements of 96.3% (88.7-98.9) and specificity of 96.4% (85.1-99.2), with a positive likelihood ratio of 26.5 (5.9-119.1), a negative likelihood ratio of 0.04 (0.01-0.12), and a diagnostic odds ratio of 699.3 (67.4-7256.0). Certainty of the evidence was graded as moderate. CONCLUSIONS: nNO is a sensitive and specific test for PCD in cooperative patients (generally >5 yr old) with high clinical suspicion for this disease. With a moderate level of evidence, this meta-analysis confirms that nNO testing using velum closure maneuvers has diagnostic accuracy similar to EM and/or genetic testing for PCD when cystic fibrosis is ruled out. Thus, low nNO values accompanied by an appropriate clinical phenotype could be used as a diagnostic PCD test, though EM and/or genetics will continue to provide confirmatory information.Item Primary Ciliary Dyskinesia. Recent Advances in Diagnostics, Genetics, and Characterization of Clinical Disease(ATS Journals, 2013-10-15) Knowles, Michael R.; Daniels, Leigh Anne; Davis, Stephanie D.; Zariwala, Maimoona A.; Leigh, Margaret W.; Department of Pediatrics, Indiana University School of MedicinePrimary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia that leads to oto-sino-pulmonary diseases and organ laterality defects in approximately 50% of cases. The estimated incidence of PCD is approximately 1 per 15,000 births, but the prevalence of PCD is difficult to determine, primarily because of limitations in diagnostic methods that focus on testing ciliary ultrastructure and function. Diagnostic capabilities have recently benefitted from (1) documentation of low nasal nitric oxide production in PCD and (2) discovery of biallelic mutations in multiple PCD-causing genes. The use of these complementary diagnostic approaches shows that at least 30% of patients with PCD have normal ciliary ultrastructure. More accurate identification of patients with PCD has also allowed definition of a strong clinical phenotype, which includes neonatal respiratory distress in >80% of cases, daily nasal congestion and wet cough starting soon after birth, and early development of recurrent/chronic middle-ear and sinus disease. Recent studies, using advanced imaging and pulmonary physiologic assessments, clearly demonstrate early onset of lung disease in PCD, with abnormal air flow mechanics by age 6–8 years that is similar to cystic fibrosis, and age-dependent onset of bronchiectasis. The treatment of PCD is not standardized, and there are no validated PCD-specific therapies. Most patients with PCD receive suboptimal management, which should include airway clearance, regular surveillance of pulmonary function and respiratory microbiology, and use of antibiotics targeted to pathogens. The PCD Foundation is developing a network of clinical centers, which should improve diagnosis and management of PCD.Item Primary Ciliary Dyskinesia: Longitudinal Study of Lung Disease by Ultrastructure Defect and Genotype(American Thoracic Society, 2019-01-15) Davis, Stephanie D.; Rosenfeld, Margaret; Lee, Hye-Seung; Ferkol, Thomas W.; Sagel, Scott D.; Dell, Sharon D.; Milla, Carlos; Pittman, Jessica E.; Shapiro, Adam J.; Sullivan, Kelli M.; Nykamp, Keith R.; Krischer, Jeffrey P.; Zariwala, Maimoona A.; Knowles, Michael R.; Leigh, Margaret W.; Pediatrics, School of MedicineRATIONALE: In primary ciliary dyskinesia, factors leading to disease heterogeneity are poorly understood. OBJECTIVES: To describe early lung disease progression in primary ciliary dyskinesia and identify associations between ultrastructural defects and genotypes with clinical phenotype. METHODS: This was a prospective, longitudinal (5 yr), multicenter, observational study. Inclusion criteria were less than 19 years at enrollment and greater than or equal to two annual study visits. Linear mixed effects models including random slope and random intercept were used to evaluate longitudinal associations between the ciliary defect group (or genotype group) and clinical features (percent predicted FEV1 and weight and height z-scores). MEASUREMENTS AND MAIN RESULTS: A total of 137 participants completed 732 visits. The group with absent inner dynein arm, central apparatus defects, and microtubular disorganization (IDA/CA/MTD) (n = 41) were significantly younger at diagnosis and in mixed effects models had significantly lower percent predicted FEV1 and weight and height z-scores than the isolated outer dynein arm defect (n = 55) group. Participants with CCDC39 or CCDC40 mutations (n = 34) had lower percent predicted FEV1 and weight and height z-scores than those with DNAH5 mutations (n = 36). For the entire cohort, percent predicted FEV1 decline was heterogeneous with a mean (SE) decline of 0.57 (0.25) percent predicted/yr. Rate of decline was different from zero only in the IDA/MTD/CA group (mean [SE], -1.11 [0.48] percent predicted/yr; P = 0.02). CONCLUSIONS: Participants with IDA/MTD/CA defects, which included individuals with CCDC39 or CCDC40 mutations, had worse lung function and growth indices compared with those with outer dynein arm defects and DNAH5 mutations, respectively. The only group with a significant lung function decline over time were participants with IDA/MTD/CA defects.Item Racial disparities in primary ciliary dyskinesia: Defining the problem and potential solutions(Wiley, 2023) Carr, Katherine A.; O’Connor, Michael G.; Shapiro, Adam J.; Machogu, Evans M.; Medicine, School of Medicine