- Browse by Subject
Browsing by Subject "KIT"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Mechanism of Transformation and Therapeutic Targets for Hematological Neoplasms Harboring Oncogenic KIT Mutation(2014) Martin, Holly René; Kapur, Reuben; Chan, Rebecca J.; Herbert, Brittney-Shea; Pollok, Karen E.Gain-of-function mutations in the KIT receptor tyrosine kinase have been associated with highly malignant human neoplasms. In particular, an acquired somatic mutation at codon 816 in the second catalytic domain of KIT involving an aspartic acid to valine substitution is found in patients with systemic mastocytosis (SM) and acute myeloid leukemia (AML). The presence of this mutation in SM and AML is associated with poor prognosis and overall survival. This mutation changes the conformation of the KIT receptor resulting in altered substrate recognition and constitutive tyrosine autophosphorylation leading to constitutive ligand independent growth. As there are currently no efficacious therapeutic agents against this mutation, this study sought to define novel therapeutic targets that contribute to aberrant signaling downstream from KITD816V that promote transformation of primary hematopoietic stem/progenitor cells in diseases such as AML and SM. This study shows that oncogenic KITD814V (murine homolog) induced myeloproliferative neoplasms (MPN) occurs in the absence of ligand stimulation, and that intracellular tyrosines are important for KITD814V-induced MPN. Among the seven intracellular tyrosines examined, tyrosine 719 alone has a unique role in regulating KITD814V-induced proliferation and survival. Residue tyrosine 719 is vital for activation of the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), p85α, downstream from KITD814V. Downstream effectors of the PI3K signaling pathway, in of leukemic cells bearing KITD814V with an allosteric inhibitor of Pak or its genetic inactivation results in growth repression due to enhanced apoptosis. To assess the role of Rac GEFs in KITD814V induced transformation, EHop-016, an inhibitor of Rac, was used to specifically target Vav1, and found to be a potent inhibitor of human and murine leukemic cell growth. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of MPN and rescued the associated pathology in mice. These studies provide insight on mechanisms and potential novel therapeutic targets for hematological malignancies harboring an oncogenic KIT mutation.Item PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal(Wiley, 2014-07) Kobayashi, Michihiro; Bai, Yunpeng; Dong, Yuanshu; Yu, Hao; Chen, Sisi; Gao, Rui; Zhang, Lujuan; Yoder, Mervin C.; Kapur, Reuben; Zhang, Zhong-Yin; Liu, Yan; Department of Pediatrics, Indiana University School of MedicineHematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in HSCs is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family (aka PRL [phosphatase of regenerating liver] phosphatases), consisting of PTP4A1/PRL1, PTP4A2/PRL2, and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.Item Role for targeted resection in the multidisciplinary treatment of metastatic gastrointestinal stromal tumor(AME Publishing Company, 2019-04-29) Kim, Bradford J.; Milgrom, Daniel P.; Feizpour, Cyrus; Kays, Joshua K.; Koniaris, Leonidas G.; Surgery, School of MedicineThe management of advanced gastrointestinal stromal tumors (GISTs) has evolved in the modern era due to the discovery of c-kit mutations and the development of tyrosine kinase inhibitors (TKIs). Until the advent of TKIs such as imatinib, the median survival reported for patients with advanced GIST was 19 months. Although surgery is the treatment of choice for resectable primary GIST, its role in cases of recurrence and metastasis remains to be unclear. This review outlines the potential beneficial role of repeat surgical resection in the multidisciplinary treatment of advanced GIST in the era of TKIs.