- Browse by Subject
Browsing by Subject "JMML"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Hematopoietic-restricted Ptpn11E76K reveals indolent MPN progression in mice(Impact Journals, 2018-04-24) Tarnawsky, Stefan P.; Yu, Wen-Mei; Qu, Cheng-Kui; Chan, Rebecca J.; Yoder, Mervin C.; Biochemistry and Molecular Biology, School of MedicineJuvenile Myelomonocytic Leukemia (JMML) is a pediatric myeloproliferative neoplasm (MPN) that has a poor prognosis. Somatic mutations in Ptpn11 are the most frequent cause of JMML and they commonly occur in utero. Animal models of mutant Ptpn11 have probed the signaling pathways that contribute to JMML. However, existing models may inappropriately exacerbate MPN features by relying on non-hematopoietic-restricted Cre-loxP strains or transplantations into irradiated recipients. In this study we generate hematopoietic-restricted models of Ptpn11E76K-mediated disease using Csf1r-MCM and Flt3Cre. We show that these animals have indolent MPN progression despite robust GM-CSF hypersensitivity and Ras-Erk hyperactivation. Rather, the dominant pathology is pronounced thrombocytopenia with expanded extramedullary hematopoiesis. Furthermore, we demonstrate that the timing of tamoxifen administration in Csf1r-MCM mice can specifically induce recombinase activity in either fetal or adult hematopoietic progenitors. We take advantage of this technique to show more rapid monocytosis following Ptpn11E76K expression in fetal progenitors compared with adult progenitors. Finally, we demonstrate that Ptpn11E76K results in the progressive reduction of T cells, most notably of CD4+ and naïve T cells. This corresponds to an increased frequency of T cell progenitors in the thymus and may help explain the occasional emergence of T-cell leukemias in JMML patients. Overall, our study is the first to describe the consequences of hematopoietic-restricted Ptpn11E76K expression in the absence of irradiation. Our techniques can be readily adapted by other researchers studying somatically-acquired blood disorders.Item Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells(Elsevier, 2022) Ramdas, Baskar; Yuen, Lisa Deng; Palam, Lakshmi Reddy; Patel, Roshini; Pasupuleti, Santhosh Kumar; Jideonwo, Victoria; Zhang, Ji; Maguire, Callista; Wong, Eric; Kanumuri, Rahul; Zhang, Chujing; Sandusky, George; Chan, Rebecca J.; Zhang, Chi; Stieglitz, Elliot; Haneline, Laura; Kapur, Reuben; Pediatrics, School of MedicineJuvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton’s tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.Item The origin of Juvenile Myelomonocytic Leukemia : Insights from developmental hematopoiesis(2017-06) Tarnawsky, Stefan Pasichnyk; Yoder, Mervin C.; Chan, Rebecca J.Hematopoiesis proceeds through three developmental phases, each with a unique and indispensable function. The individual roles of these phases in the pathogenesis of blood disorders is unknown. We have adapted murine lineage trace models to identify the relative contributions of embryonic, fetal, and adult hematopoietic phases to the origin of Juvenile Myelomonocytic Leukemia. We hypothesized that the fetal phase would have the most pronounced contribution to the development of JMML, a pediatric myeloproliferative disorder whose disease-initiating somatic mutations occur in utero. Progenitors expressing PTPN11E76K from all three waves were growth hypersensitive to GM-CSF due to hyperactive RAS-ERK signaling. However, fulminant myeloproliferation was only seen in fetal and adult cohorts. We observed equal disease severity in FLT3Cre; PTPN11E76K; ROSA26mTmG and CSF1R-MCM; PTPN11E76K; ROSA26YFP cohorts, which had high and low mutant allele frequencies, respectively. This led to the revelation that all progenitors in the BM niche of mutant animals have equal growth hypersensitivity and RAS-ERK hyperactivation due to non-cell autonomous effects of PTPN11E76K. We further identified that FLT3Cre has hematopoietic-restricted expression, and thereby circumvented morbidity from PTPN11E76K expression in endothelial and stromal cells. This led us to hypothesize that FLT3Cre; KrasG12D; ROSA26mTmG would be the first faithful model of JMML to express this disease-initiating mutation. Indeed, FLT3Cre; KrasG12D mice were born at expected Mendelian ratio and showed normal weight gain to 2 weeks of age. Thereafter, they acquired defining features of JMML including monocytosis, anaemia, thrombocytopenia, and hepatosplenomegaly. All FLT3Cre; KrasG12D mice succumb to a JMML-like disease, which was propagated following transplantation. This is in contrast with CSF1R-MCM; KrasG12D; ROSA26YFP mice, in which low mutant allele frequencies in either fetal or adult HSCs uniformly resulted in T-ALL. Our models reveal previously underappreciated features of JMML including an expansion of dendritic cells and a pronounced defect in T-lymphocyte development. We are the first to demonstrate non-cell autonomous effects of hematopoietic-restricted PTPN11E76K expression. Most importantly, we have shown that both the spatial and the temporal origin of JMML-initiating mutations will affect disease manifestations. Each of our findings suggest novel strategies to treat this intractable disease.Item Pharmacologic inhibition of PI3K p110δ in mutant Shp2E76K-expressing mice(Impact Journals, 2017-10-03) Deng, Lisa; Virts, Elizabeth L.; Kapur, Reuben; Chan, Rebecca J.; Pediatrics, School of MedicineJuvenile myelomonocytic leukemia is a childhood malignancy that lacks effective chemotherapies and thus has poor patient outcomes. PI3K p110δ has been found to promote hyperproliferation of cells expressing mutant Shp2. In this study, we tested the efficacy of a PI3Kδ inhibitor in mice expressing the Shp2 gain-of-function mutation, E76K. We found that in vivo treatment of mice led to significantly decreased splenomegaly, reduced frequency of bone marrow progenitor cells, and increased terminally differentiated peripheral blood myeloid cells. The survival of drug-treated mice was significantly prolonged compared to vehicle-treated controls, although mice from both groups ultimately succumbed to a similar myeloid cell expansion. PI3Kδ inhibitors are currently used to treat patients with relapsed lymphoid malignancies, such as chronic lymphocytic leukemia. The current findings provide evidence for using PI3Kδ inhibitors as a treatment strategy for JMML and potentially other myeloid diseases.Item PI3K in juvenile myelomonocytic leukemia(2013-11-20) Goodwin, Charles B.; Chan, Rebecca, J.; Herbert, Brittney-Shea; White, Kenneth E.; Yoder, Mervin C.Juvenile Myelomonocytic Leukemia (JMML) is rare, fatal myeloproliferative disease (MPD) affecting young children, and is characterized by expansion of monocyte lineage cells and hypersensitivity to Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) stimulation. JMML is frequently associated with gain-of-function mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase, Shp2. Activating Shp2 mutations are known to promote hyperactivation of the Ras-Erk signaling pathway, but Akt is also observed to have enhanced phosphorylation, suggesting a potential role for Phosphatidylinositol-3-Kinase (PI3K)-Akt signaling in mutant Shp2-induced GM-CSF hypersensitivity and leukemogenesis. Having demonstrated that Class IA PI3K is hyperactivated in the presence of mutant Shp2 and contributes to GM-CSF hypersensitivity, I hypothesized the hematopoietic-specific Class IA PI3K catalytic subunit p110δ is a crucial mediator of mutant Shp2-induced PI3K hyperactivation and GM-CSF hypersensitivity in vitro and MPD development in vivo. I crossed gain-of-function mutant Shp2 D61Y inducible knockin mice, which develop fatal MPD, with mice expressing kinase-dead mutant p110δ D910A to evaluate p110δ’s role in mutant Shp2-induced GM-CSF hypersensitivity in vitro and MPD development in vivo. As a comparison, I also crossed Shp2 D61Y inducible knockin mice with mice bearing inducible knockout of the ubiquitously expressed Class IA PI3K catalytic subunit, p110α. I found that genetic interruption of p110δ, but not p110α, significantly reduced GM-CSF-stimulated hyperactivation of both the Ras-Erk and PI3K-Akt signaling pathways, and as a consequence, resulted in reduced GM-CSF-stimulated hyper-proliferation in vitro. Furthermore, I found that mice bearing genetic disruption of p110δ, but not p110α, in the presence of gain-of-function mutant Shp2 D61Y, had on average, smaller spleen sizes, suggesting that loss of p110δ activity reduced MPD severity in vivo. I also investigated the effects of three PI3K inhibitors with high specificity for p110δ, IC87114, GDC-0941, and GS-9820 (formerly known as CAL-120), on mutant Shp2-induced GM-CSF hypersensitivity. These inhibitors with high specificity for p110δ significantly reduced GM-CSF-stimulated hyperactivation of PI3K-Akt and Ras-Erk signaling and reduced GM-CSF-stimulated hyperproliferation in cells expressing gain-of-function Shp2 mutants. Collectively, these findings show that p110δ-dependent PI3K hyperactivation contributes to mutant Shp2-induced GM-CSF hypersensitivity and MPD development, and that p110δ represents a potential novel therapeutic target for JMML.Item Rapid development of myeloproliferative neoplasm in mice with Ptpn11D61Y mutation and haploinsufficient for Dnmt3a(Impact Journals, 2017-12-26) Deng, Lisa; Richine, Briana M.; Virts, Elizabeth L.; Jideonwo-Auman, Victoria N.; Chan, Rebecca J.; Kapur, Reuben; Pediatrics, School of MedicinePTPN11 gain-of-function mutation is the most common mutation found in patients with juvenile myelomonocytic leukemia and DNMT3A loss occurs in over 20% of acute myeloid leukemia patients. We studied the combined effect of both Ptpn11 gain-of-function mutation (D61Y) and Dnmt3a haploinsufficiency on mouse hematopoiesis, the presence of which has been described in both juvenile myelomonocytic leukemia and acute myeloid leukemia patients. Double mutant mice rapidly become moribund relative to any of the other genotypes, which is associated with enlargement of the spleen and an increase in white blood cell counts. An increase in the mature myeloid cell compartment as reflected by the presence of Gr1+Mac1+ cells was also observed in double mutant mice relative to any other group. Consistent with these observations, a significant increase in the absolute number of granulocyte macrophage progenitors (GMPs) was seen in double mutant mice. A decrease in the lymphoid compartment including both T and B cells was noted in the double mutant mice. Another significant difference was the presence of extramedullary erythropoiesis with increased erythroid progenitors in the spleens of Dnmt3a+/-;D61Y mice relative to other groups. Taken together, our results suggest that the combined haploinsufficiency of Dnmt3a and presence of an activated Shp2 changes the composition of multiple hematopoietic lineages in mice relative to the individual heterozygosity of these genes.Item The role of Bruton's tyrosine kinase and PI3K p110δ in mutant SHP2-induced juvenile myelomonocytic leukemia(2018) Deng, Lisa; Chan, Rebecca, J.; Kapur, Reuben; Herbert, Brittney-Shea; Ware, Stephanie M.; Yoder, MervinJuvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm that lacks effective chemotherapies. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in SHP2, leading to hyperactivation of ERK and AKT and hyperproliferation of cells in response to granulocyte macrophage-colony stimulating factor (GM-CSF). Our lab previously showed that p110δ, the hematopoietic-specific catalytic subunit of phosphoinositide 3-kinase, is a crucial mediator of mutant Shp2-induced GM-CSF hypersensitivity in vitro. We treated oncogenic Shp2-expressing mice with a p110δ inhibitor and showed that the strong effect our lab observed in vitro translated into reduced splenomegaly and prolonged survival in vivo. We investigated molecules potentially cooperating with p110δ signaling and discovered that Bruton’s tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2 myeloid cells. We used specific BTK and p110δ inhibitors to demonstrate that BTK cooperates with p110δ to hyperactivate Akt/Erk and to promote hyperproliferation. GOF Shp2-expressing mice treated in vivo with the drug combination targeting p110δ and BTK have significantly decreased splenomegaly and WBC counts. We also explored the mechanism of BTK signaling and hypothesized that B cell adaptor for PI3K (BCAP) mediated BTK upregulation of PI3K activity. In mutant Shp2 macrophages, we observed BCAP phosphorylation specifically in the larger isoforms needed for PI3K activation, and BTK inhibition led to a dose-dependent reduction in this phosphorylation. We also demonstrated reduced interaction between BCAP and the PI3K regulatory p85α subunit bearing mutated SH2 domains. Finally, we investigated the effects of mutated DNA methyltransferase 3A (Dnmt3a) in conjunction with GOF Shp2. Double mutant mice quickly became moribund with pronounced splenomegaly and leukocytosis. There was an expansion of mature myeloid cells in the periphery and myeloid progenitors in the bone marrow, plus anemia with evidence of compensatory erythropoiesis in the spleen. Our findings show that the myeloproliferative neoplasm caused by GOF Shp2 is due to hyperactive p110δ, and this is further promoted by BTK, which forms a positive feedback loop with PI3K and BCAP, thus leading to more Akt/Erk hyperphosphorylation and more hyperproliferation in response to GM-CSF. The dual inhibition of p110δ and BTK represents a novel effective treatment strategy for JMML and other diseases induced by oncogenic Shp2.Item Targeting SHP2 phosphatase in hematological malignancies(Taylor & Francis, 2022) Kanumuri, Rahul; Pasupuleti, Santhosh Kumar; Burns, Sarah S.; Ramdas, Baskar; Kapur, Reuben; Pediatrics, School of MedicineIntroduction: Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitously expressed, non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene. Gain-of-function (GOF) mutations in PTPN11 are associated with the development of various hematological malignancies and Noonan syndrome with multiple lentigines (NS-ML). Preclinical studies performed with allosteric SHP2 inhibitors and combination treatments of SHP2 inhibitors with inhibitors of downstream regulators (such as MEK, ERK, and PD-1/PD-L1) demonstrate improved antitumor benefits. However, the development of novel SHP2 inhibitors is necessary to improve the therapeutic strategies for hematological malignancies and tackle drug resistance and disease relapse. Areas covered: This review examines the structure of SHP2, its function in various signaling cascades, the consequences of constitutive activation of SHP2 and potential therapeutic strategies to treat SHP2-driven hematological malignancies. Expert opinion: While SHP2 inhibitors have exhibited promise in preclinical trials, numerous challenges remain in translation to the clinic, including drug resistance. Although PROTAC-based SHP2 degraders show better efficacy than SHP2 inhibitors, novel strategies need to be designed to improve SHP2-specific therapies in hematologic malignancies. Genome-wide CRISPR screening should also be used to identify molecules that confer resistance to SHP2 inhibitors. Targeting these molecules together with SHP2 can increase the target specificity and reduce drug resistance.