- Browse by Subject
Browsing by Subject "J-wave syndrome"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Simultaneous activation of the small conductance calcium-activated potassium current by acetylcholine and inhibition of sodium current by ajmaline cause J-wave syndrome in Langendorff-perfused rabbit ventricles(Elsevier, 2021) Fei, Yu-Dong; Chen, Mu; Guo, Shuai; Ueoka, Akira; Chen, Zhenhui; Rubart-von der Lohe, Michael; Everett, Thomas H., IV.; Qu, Zhilin; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Concomitant apamin-sensitive small conductance calcium-activated potassium current (IKAS) activation and sodium current inhibition induce J-wave syndrome (JWS) in rabbit hearts. Sudden death in JWS occurs predominantly in men at night when parasympathetic tone is strong. Objective: The purpose of this study was to test the hypotheses that acetylcholine (ACh), the parasympathetic transmitter, activates IKAS and causes JWS in the presence of ajmaline. Methods: We performed optical mapping in Langendorff-perfused rabbit hearts and whole-cell voltage clamp to determine IKAS in isolated ventricular cardiomyocytes. Results: ACh (1 μM) + ajmaline (2 μM) induced J-point elevations in all (6 male and 6 female) hearts from 0.01± 0.01 to 0.31 ± 0.05 mV (P<.001), which were reduced by apamin (specific IKAS inhibitor, 100 nM) to 0.14 ± 0.02 mV (P<.001). More J-point elevation was noted in male than in female hearts (P=.037). Patch clamp studies showed that ACh significantly (P<.001) activated IKAS in isolated male but not in female ventricular myocytes (n=8). Optical mapping studies showed that ACh induced action potential duration (APD) heterogeneity, which was more significant in right than in left ventricles. Apamin in the presence of ACh prolonged both APD at the level of 25% (P<.001) and APD at the level of 80% (P<.001) and attenuated APD heterogeneity. Ajmaline further increased APD heterogeneity induced by ACh. Ventricular arrhythmias were induced in 6 of 6 male and 1 of 6 female hearts (P=.015) in the presence of ACh and ajmaline, which was significantly suppressed by apamin in the former. Conclusion: ACh activates ventricular IKAS. ACh and ajmaline induce JWS and facilitate the induction of ventricular arrhythmias more in male than in female ventricles.Item Small-conductance Ca2+-activated K+ channels promote J-wave syndrome and phase-2 reentry(Elsevier, 2020-09) Landaw, Julian; Zhang, Zhaoyang; Song, Zhen; Liu, Michael B.; Olcese, Riccardo; Chen, Peng-Sheng; Weiss, James N.; Qu, Zhilin; Medicine, School of MedicineBackground: Small-conductance Ca2+-activated potassium (SK) channels play complex roles in cardiac arrhythmogenesis. SK channels colocalize with L-type Ca2+ channels, yet how this colocalization affects cardiac arrhythmogenesis is unknown. Objective: The purpose of this study was to investigate the role of colocalization of SK channels with L-type Ca2+ channels in promoting J-wave syndrome and ventricular arrhythmias. Methods: We carried out computer simulations of single-cell and tissue models. SK channels in the model were assigned to preferentially sense Ca2+ in the bulk cytosol, subsarcolemmal space, or junctional cleft. Results: When SK channels sense Ca2+ in the bulk cytosol, the SK current (ISK) rises and decays slowly during an action potential, the action potential duration (APD) decreases as the maximum conductance increases, no complex APD dynamics and phase 2 reentry can be induced by ISK. When SK channels sense Ca2+ in the subsarcolemmal space or junctional cleft, ISK can rise and decay rapidly during an action potential in a spike-like pattern because of spiky Ca2+ transients in these compartments, which can cause spike-and-dome action potential morphology, APD alternans, J-wave elevation, and phase 2 reentry. Our results can account for the experimental finding that activation of ISK induced J-wave syndrome and phase 2 reentry in rabbit hearts. Conclusion: Colocalization of SK channels with L-type Ca2+ channels so that they preferentially sense Ca2+ in the subsarcolemmal or junctional space may result in a spiky ISK, which can functionally play a similar role of the transient outward K+ current in promoting J-wave syndrome and ventricular arrhythmias.