- Browse by Subject
Browsing by Subject "Isoxazoles"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy(ACS Publications, 2017-06-08) Rietz, Anne; Li, Hongxia; Quist, Kevin M.; Cherry, Jonathan J.; Lorson, Christian L.; Burnett, Barrington; Kern, Nicholas L.; Calder, Alyssa N.; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J.; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A.; Cuny, Gregory D.; Androphy, Elliot J.; Hodgetts, Kevin J.; Dermatology, School of MedicineSpinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.Item Inhibition of 12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes(American Diabetes Association, 2017-11) Hernandez-Perez, Marimar; Chopra, Gaurav; Fine, Jonathan; Conteh, Abass M.; Anderson, Ryan M.; Linnemann, Amelia K.; Benjamin, Chanelle; Nelson, Jennifer B.; Benninger, Kara S.; Nadler, Jerry L.; Maloney, David J.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Pediatrics, School of MedicineIslet β-cell dysfunction and aggressive macrophage activity are early features in the pathogenesis of type 1 diabetes (T1D). 12/15-Lipoxygenase (12/15-LOX) is induced in β-cells and macrophages during T1D and produces proinflammatory lipids and lipid peroxides that exacerbate β-cell dysfunction and macrophage activity. Inhibition of 12/15-LOX provides a potential therapeutic approach to prevent glycemic deterioration in T1D. Two inhibitors recently identified by our groups through screening efforts, ML127 and ML351, have been shown to selectively target 12/15-LOX with high potency. Only ML351 exhibited no apparent toxicity across a range of concentrations in mouse islets, and molecular modeling has suggested reduced promiscuity of ML351 compared with ML127. In mouse islets, incubation with ML351 improved glucose-stimulated insulin secretion in the presence of proinflammatory cytokines and triggered gene expression pathways responsive to oxidative stress and cell death. Consistent with a role for 12/15-LOX in promoting oxidative stress, its chemical inhibition reduced production of reactive oxygen species in both mouse and human islets in vitro. In a streptozotocin-induced model of T1D in mice, ML351 prevented the development of diabetes, with coincident enhancement of nuclear Nrf2 in islet cells, reduced β-cell oxidative stress, and preservation of β-cell mass. In the nonobese diabetic mouse model of T1D, administration of ML351 during the prediabetic phase prevented dysglycemia, reduced β-cell oxidative stress, and increased the proportion of anti-inflammatory macrophages in insulitis. The data provide the first evidence to date that small molecules that target 12/15-LOX can prevent progression of β-cell dysfunction and glycemic deterioration in models of T1D.Item Race and sex differences in response to endothelin receptor antagonists for pulmonary arterial hypertension(Elsevier, 2012-01) Gabler, Nicole B.; French, Benjamin; Strom, Brian L.; Liu, Ziyue; Palevsky, Harold I.; Taichman, Darren B.; Kawut, Steven M.; Halpern, Scott D.; Biostatistics, School of Public HealthBackground Recently studied therapies for pulmonary arterial hypertension (PAH) have improved outcomes among populations of patients, but little is known about which patients are most likely to respond to specific treatments. Differences in endothelin-1 biology between sexes and between whites and blacks may lead to differences in patients' responses to treatment with endothelin receptor antagonists (ERAs). Methods We conducted pooled analyses of deidentified, patient-level data from six randomized placebo-controlled trials of ERAs submitted to the US Food and Drug Administration to elucidate heterogeneity in treatment response. We estimated the interaction between treatment assignment (ERA vs placebo) and sex and between treatment and white or black race in terms of the change in 6-min walk distance from baseline to 12 weeks. Results Trials included 1,130 participants with a mean age of 49 years; 21% were men, 74% were white, and 6% were black. The placebo-adjusted response to ERAs was 29.7 m (95% CI, 3.7-55.7 m) greater in women than in men (P = .03). The placebo-adjusted response was 42.2 m for whites and −1.4 m for blacks, a difference of 43.6 m (95% CI, −3.5-90.7 m) (P = .07). Similar results were found in sensitivity analyses and in secondary analyses using the outcome of absolute distance walked. Conclusions Women with PAH obtain greater responses to ERAs than do men, and whites may experience a greater treatment benefit than do blacks. This heterogeneity in treatment-response may reflect pathophysiologic differences between sexes and races or distinct disease phenotypes.