ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Islets of Langerhans"

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    12-Lipoxygenase Promotes Obesity-Induced Oxidative Stress in Pancreatic Islets
    (American Society for Microbiology (ASM), 2014-10) Tersey, Sarah A.; Maier, Bernhard; Nishiki, Yurika; Maganti, Aarthi V.; Nadler, Jerry L.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of Medicine
    High-fat diets lead to obesity, inflammation, and dysglycemia. 12-Lipoxygenase (12-LO) is activated by high-fat diets and catalyzes the oxygenation of cellular arachidonic acid to form proinflammatory intermediates. We hypothesized that 12-LO in the pancreatic islet is sufficient to cause dysglycemia in the setting of high-fat feeding. To test this, we generated pancreas-specific 12-LO knockout mice and studied their metabolic and molecular adaptations to high-fat diets. Whereas knockout mice and control littermates displayed identical weight gain, body fat distribution, and macrophage infiltration into fat, knockout mice exhibited greater adaptive islet hyperplasia, improved insulin secretion, and complete protection from dysglycemia. At the molecular level, 12-LO deletion resulted in increases in islet antioxidant enzymes Sod1 and Gpx1 in response to high-fat feeding. The absence or inhibition of 12-LO led to increases in nuclear Nrf2, a transcription factor responsible for activation of genes encoding antioxidant enzymes. Our data reveal a novel pathway in which islet 12-LO suppresses antioxidant enzymes and prevents the adaptive islet responses in the setting of high-fat diets.
  • Loading...
    Thumbnail Image
    Item
    The demise of islet allotransplantation in the United States: A call for an urgent regulatory update
    (Wiley, 2021-04) Witkowski, Piotr; Philipson, Louis H.; Kaufman, Dixon B.; Ratner, Lloyd E.; Abouljoud, Marwan S.; Bellin, Melena D.; Buse, John B.; Kandeel, Fouad; Stock, Peter G.; Mulligan, David C.; Markmann, James F.; Kozlowski, Tomasz; Andreoni, Kenneth A.; Alejandro, Rodolfo; Baidal, David A.; Hardy, Mark A.; Wickrema, Amittha; Mirmira, Raghavendra G.; Fung, John; Becker, Yolanda T.; Josephson, Michelle A.; Bachul, Piotr J.; Pyda, Jordan S.; Charlton, Michael; Millis, J. Michael; Gaglia, Jason L.; Stratta, Robert J.; Fridell, Jonathan A.; Niederhaus, Silke V.; Forbes, Rachael C.; Jayant, Kumar; Robertson, R. Paul; Odorico, Jon S.; Levy, Marlon F.; Harland, Robert C.; Abrams, Peter L.; Olaitan, Oyedolamu K.; Kandaswamy, Raja; Wellen, Jason R.; Japour, Anthony J.; Desai, Chirag S.; Naziruddin, Bashoo; Balamurugan, Appakalai N.; Barth, Rolf N.; Ricordi, Camillo; Surgery, School of Medicine
    Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and “more than minimally manipulated” human cell and tissue products (HCT/Ps). In contrast, across the world, human islets are appropriately defined as “minimally manipulated tissue” and not regulated as a drug, which has led to islet allotransplantation (allo-ITx) becoming a standard-of-care procedure for selected patients with type 1 diabetes mellitus. This regulatory distinction impedes patient access to islets for transplantation in the US. As a result only 11 patients underwent allo-ITx in the US between 2016 and 2019, and all as investigational procedures in the settings of a clinical trials. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States.
  • Loading...
    Thumbnail Image
    Item
    Excess BMI Accelerates Islet Autoimmunity in Older Children and Adolescents
    (American Diabetes Association, 2020-03) Ferrara-Cook, Christine; Geyer, Susan Michelle; Evans-Molina, Carmella; Libman, Ingrid M.; Becker, Dorothy J.; Gitelman, Stephen E.; Jose Redondo, Maria; Medicine, School of Medicine
    Objective: Sustained excess BMI increases the risk of type 1 diabetes (T1D) in autoantibody-positive relatives without diabetes of patients. We tested whether elevated BMI also accelerates the progression of islet autoimmunity before T1D diagnosis. Research design and methods: We studied 706 single autoantibody-positive pediatric TrialNet participants (ages 1.6-18.6 years at baseline). Cumulative excess BMI (ceBMI) was calculated for each participant based on longitudinally accumulated BMI ≥85th age- and sex-adjusted percentile. Recursive partitioning analysis and multivariable modeling defined the age cut point differentiating the risk for progression to multiple positive autoantibodies. Results: At baseline, 175 children (25%) had a BMI ≥85th percentile. ceBMI range was -9.2 to 15.6 kg/m2 (median -1.91), with ceBMI ≥0 kg/m2 corresponding to persistently elevated BMI ≥85th percentile. Younger age increased the progression to multiple autoantibodies, with age cutoff of 9 years defined by recursive partitioning analysis. Although ceBMI was not significantly associated with progression from single to multiple autoantibodies overall, there was an interaction with ceBMI ≥0 kg/m2, age, and HLA (P = 0.009). Among children ≥9 years old without HLA DR3-DQ2 and DR4-DQ8, ceBMI ≥0 kg/m2 increased the rate of progression from single to multiple positive autoantibodies (hazard ratio 7.32, P = 0.004) and conferred a risk similar to that in those with T1D-associated HLA haplotypes. In participants <9 years old, the effect of ceBMI on progression to multiple autoantibodies was not significant regardless of HLA type. Conclusions: These data support that elevated BMI may exacerbate islet autoimmunity prior to clinical T1D, particularly in children with lower risk based on age and HLA. Interventions to maintain normal BMI may prevent or delay the progression of islet autoimmunity.
  • Loading...
    Thumbnail Image
    Item
    Hormones and cholinergic agents in insulin secretion in vitro
    (1968) Mayhew, Dale Allan
  • Loading...
    Thumbnail Image
    Item
    An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration
    (Elsevier, 2016-01-15) Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.; Department of Pediatrics, IU School of Medicine
    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation.
  • Loading...
    Thumbnail Image
    Item
    Maintenance of Pdx1 mRNA translation in islet β-cells during the unfolded protein response
    (The Endocrine Society, 2014-11) Templin, Andrew T.; Maier, Bernhard; Tersey, Sarah A.; Hatanaka, Masayuki; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of Medicine
    In type 1 diabetes, proinflammatory cytokines secreted by infiltrating immune cells activate the unfolded protein response (UPR) in islet β-cells, which leads to attenuation of global mRNA translation. Under such conditions, privileged mRNAs required for adaptation to the prevailing stress are maintained in an actively translated state. Pdx1 is a β-cell transcription factor that is required for the adaptive UPR, but it is not known how translation of its mRNA is maintained under these conditions. To study translation, we established conditions in vitro with MIN6 cells and mouse islets and a mixture of proinflammatory cytokines (IL-1β, TNF-α, and IFN-γ) that mimicked the UPR conditions seen in type 1 diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Similar to other privileged mRNAs (Atf4 and Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes under the UPR, whereas the mRNA encoding a proinsulin-processing enzyme (Cpe) and others partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5'-untranslated region of mouse Pdx1 (between bp -105 to -280) contained elements that promoted translation under both normal and UPR conditions, and this region exhibited conserved sequences and secondary structure similar to those of other known internal ribosome entry sites. Our findings suggest that Pdx1 protein levels are maintained in the setting of the UPR, in part, through elements in the 5'-untranslated region that confer privileged mRNA translation in a 5'-7-methylguanylate cap-independent manner.
  • Loading...
    Thumbnail Image
    Item
    Minireview: Emerging Concepts in Islet Macrophage Biology in Type 2 Diabetes
    (The Endocrine Society, 2015-07) Morris, David L.; Department of Medicine, IU School of Medicine
    Chronic systemic inflammation is a hallmark feature of obesity and type 2 diabetes. Both resident and recruited islet macrophages contribute to the proinflammatory milieu of the diabetic islet. However, macrophages also appear to be critical for β-cell formation during development and support β-cell replication in experimental models of pancreas regeneration. In light of these findings, perhaps macrophages in the islet need to be viewed more as a fulcrum where deleterious inflammatory activation is balanced with beneficial tissue repair processes. Undoubtedly, defining the factors that contribute to the ontogeny, heterogeneity, and functionality of macrophages in normal, diseased, and regenerating islets will be necessary to determine whether that fulcrum can be moved to preserve functional β-cell mass in persons with diabetes. The intent of this review is to introduce the reader to emerging concepts of islet macrophage biology that may challenge the perception that macrophage accumulation in islets is merely a pathological feature of type 2 diabetes.
  • Loading...
    Thumbnail Image
    Item
    Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice
    (bioRxiv, 2024-05-09) Syed, Farooq; Ballew, Olivia; Lee, Chih-Chun; Rana, Jyoti; Krishnan, Preethi; Castela, Angela; Weaver, Staci A.; Chalasani, Namratha Shivani; Thomaidou, Sofia F.; Demine, Stephane; Chang, Garrick; de Brachène, Alexandra Coomans; Alvelos, Maria Ines; Marselli, Lorella; Orr, Kara; Felton, Jamie L.; Liu, Jing; Marchetti, Piero; Zaldumbide, Arnaud; Scheuner, Donalyn; Eizirik, Decio L.; Evans-Molina, Carmella; Pediatrics, School of Medicine
    Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.
  • Loading...
    Thumbnail Image
    Item
    Role of Proinsulin Self-Association in Mutant INS Gene–Induced Diabetes of Youth
    (American Diabetes Association, 2020-05) Sun, Jinhong; Xiong, Yi; Li, Xin; Haataja, Leena; Chen, Wei; Mir, Saiful A.; Lv, Li; Madley, Rachel; Larkin, Dennis; Anjum, Arfah; Dhayalan, Balamurugan; Rege, Nischay; Wickramasinghe, Nalinda P.; Weiss, Michael A.; Itkin-Ansari, Pamela; Kaufman, Randal J.; Ostrov, David A.; Arvan, Peter; Liu, Ming; Biochemistry and Molecular Biology, School of Medicine
    Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.
  • Loading...
    Thumbnail Image
    Item
    SET7/9 Enzyme Regulates Cytokine-induced Expression of Inducible Nitric-oxide Synthase through Methylation of Lysine 4 at Histone 3 in the Islet β Cell
    (American Society for Biochemistry and Molecular Biology, 2015-07-03) Fujimaki, Kyoko; Ogihara, Takeshi; Morris, David L.; Oda, Hisanobu; Iida, Hitoshi; Fujitani, Yoshio; Mirmira, Raghavendra G.; Evans-Molina, Carmella; Watada, Hirotaka; Department of Medicine, IU School of Medicine
    SET7/9 is an enzyme that methylates histone 3 at lysine 4 (H3K4) to maintain euchromatin architecture. Although SET7/9 is enriched in islets and contributes to the transactivation of β cell-specific genes, including Ins1 and Slc2a, SET7/9 has also been reported to bind the p65 subunit of nuclear factor κB in non-β cells and modify its transcriptional activity. Given that inflammation is a central component of β cell dysfunction in Type 1 and Type 2 diabetes, the aim of this study was to elucidate the role of SET7/9 in proinflammatory cytokine signaling in β cells. To induce inflammation, βTC3 insulinoma cells were treated with IL-1β, TNF-α, and IFN-γ. Cytokine treatment led to increased expression of inducible nitric-oxide synthase, which was attenuated by the diminution of SET7/9 using RNA interference. Consistent with previous reports, SET7/9 was co-immunoprecipitated with p65 and underwent cytosolic to nuclear translocation in response to cytokines. ChIP analysis demonstrated augmented H3K4 mono- and dimethylation of the proximal Nos2 promoter with cytokine exposure. SET7/9 was found to occupy this same region, whereas SET7/9 knockdown attenuated cytokine-induced histone methylation of the Nos2 gene. To test this relationship further, islets were isolated from SET7/9-deficient and wild-type mice and treated with IL-1β, TNF-α, and IFN-γ. Cytokine-induced Nos2 expression was reduced in the islets from SET7/9 knock-out mice. Together, our findings suggest that SET7/9 contributes to Nos2 transcription and proinflammatory cytokine signaling in the pancreatic β cell through activating histone modifications.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University