- Browse by Subject
Browsing by Subject "Isha yoga"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advanced Meditation Alters Resting-State Brain Network Connectivity Correlating With Improved Mindfulness(Frontiers Media, 2021-11) Vishnubhotla, Ramana V.; Radhakrishnan, Rupa; Kveraga, Kestas; Deardorff, Rachael; Ram, Chithra; Pawale, Dhanashri; Wu, Yu-Chien; Renschler, Janelle; Subramaniam, Balachundhar; Sadhasivam, Senthilkumar; Radiology and Imaging Sciences, School of MedicinePurpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI). Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity. Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p < 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p < 0.01). Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Item Large-scale genomic study reveals robust activation of the immune system following advanced Inner Engineering meditation retreat(National Academy of Science, 2021) Chandran, Vijayendran; Bermúdez, Mei-Ling; Koka, Mert; Chandran, Brindha; Pawale, Dhanashri; Vishnubhotla, Ramana; Alankar, Suresh; Maturi, Raj; Subramaniam, Balachundhar; Sadhasivam, Senthilkumar; Anesthesia, School of MedicineThe positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein-protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.