- Browse by Subject
Browsing by Subject "Ion channels"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item A long-read draft assembly of the Chinese mantis (Mantodea: Mantidae: Tenodera sinensis) genome reveals patterns of ion channel gain and loss across Arthropoda(Oxford University Press, 2024) Goldberg, Jay K.; Godfrey, R. Keating; Barrett, Meghan; Biology, School of SciencePraying mantids (Mantodea: Mantidae) are iconic insects that have captivated biologists for decades, especially the species with cannibalistic copulatory behavior. This behavior has been cited as evidence that insects lack nociceptive capacities and cannot feel pain; however, this behaviorally driven hypothesis has never been rigorously tested at the genetic or functional level. To enable future studies of nociceptive capabilities in mantids, we sequenced and assembled a draft genome of the Chinese praying mantis (Tenodera sinensis) and identified multiple classes of nociceptive ion channels by comparison to orthologous gene families in Arthropoda. Our assembly—produced using PacBio HiFi reads—is fragmented (total size = 3.03 Gb; N50 = 1.8 Mb; 4,966 contigs), but is highly complete with respect to gene content (BUSCO complete = 98.7% [odb10_insecta]). The size of our assembly is substantially larger than that of most other insects, but is consistent with the size of other mantid genomes. We found that most families of nociceptive ion channels are present in the T. sinensis genome; that they are most closely related to those found in the damp-wood termite (Zootermopsis nevadensis); and that some families have expanded in T. sinensis while others have contracted relative to nearby lineages. Our findings suggest that mantids are likely to possess nociceptive capabilities and provide a foundation for future experimentation regarding ion channel functions and their consequences for insect behavior.Item Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12(American Physiological Society, 2019-02-01) Pan, Zhenwei; Ai, Tomohiko; Chang, Po-Cheng; Liu, Ying; Liu, Jijia; Maruyama, Mitsunori; Homsi, Mohamed; Fishbein, Michael C.; Rubart, Michael; Lin, Shien-Fong; Xiao, Deyong; Chen, Hanying; Chen, Peng-Sheng; Shou, Weinian; Li, Bai-Yan; Medicine, School of MedicineCardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation.Item Cation-selective channel is regulated by anions according to their Hofmeister ranking(Wiley, 2017-03-20) Gurnev, Philip A.; Roark, Torri C.; Petrache, Horia I.; Sodt, Alexander J.; Bezrukov, Sergey M.; Physics, School of ScienceSpecificity of small ions, the Hofmeister ranking, is long-known and has many applications including medicine. Yet it evades consistent theoretical description. Here we study the effect of Hofmeister anions on gramicidin A channels in lipid membranes. Counterintuitively, we find that conductance of this perfectly cation-selective channel increases about two-fold in the H2PO4−Item Characterization of Membrane Patch-Ion Channel Probes for Scanning Ion Conductance Microscopy(Wiley, 2018-05) Shi, Wenqing; Zeng, Yuhan; Zhu, Cheng; Xiao, Yucheng; Cummins, Theodore R.; Hou, Jianghui; Baker, Lane A.; Biology, School of ScienceIntegration of dual‐barrel membrane patch‐ion channel probes (MP‐ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP‐ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2+‐activated K+ channels to establish the generalizability of the methods. Next, the capability of the MP‐ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof‐of‐principle experiment is performed and site‐specific molecular/ionic flux sensing is demonstrated at single‐ion‐channel level, which show that the MP‐ICP platform can be used to quantify local molecular/ionic concentrations.Item Concomitant SK current activation and sodium current inhibition cause J wave syndrome(American Society for Clinical Investigation, 2018-11-15) Chen, Mu; Xu, Dong-Zhu; Wu, Adonis Z.; Guo, Shuai; Wan, Juyi; Yin, Dechun; Lin, Shien-Fong; Chen, Zhenhui; Rubart-von der Lohe, Michael; Everett, Thomas H., IV; Qu, Zhilin; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineThe mechanisms of J wave syndrome (JWS) are incompletely understood. Here, we showed that the concomitant activation of small-conductance calcium-activated potassium (SK) current (IKAS) and inhibition of sodium current by cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) recapitulate the phenotypes of JWS in Langendorff-perfused rabbit hearts. CyPPA induced significant J wave elevation and frequent spontaneous ventricular fibrillation (SVF), as well as sinus bradycardia, atrioventricular block, and intraventricular conduction delay. IKAS activation by CyPPA resulted in heterogeneous shortening of action potential (AP) duration (APD) and repolarization alternans. CyPPA inhibited cardiac sodium current (INa) and decelerated AP upstroke and intracellular calcium transient. SVFs were typically triggered by short-coupled premature ventricular contractions, initiated with phase 2 reentry and originated more frequently from the right than the left ventricles. Subsequent IKAS blockade by apamin reduced J wave elevation and eliminated SVF. β-Adrenergic stimulation was antiarrhythmic in CyPPA-induced electrical storm. Like CyPPA, hypothermia (32.0°C) also induced J wave elevation and SVF. It facilitated negative calcium-voltage coupling and phase 2 repolarization alternans with spatial and electromechanical discordance, which were ameliorated by apamin. These findings suggest that IKAS activation contributes to the development of JWS in rabbit ventricles.Item Contribution of K+ Channels to Coronary Dysfunction in Metabolic Syndrome(2009-06-24T12:58:39Z) Watanabe, Reina; Tune, Johnathan D.Coronary microvascular function is markedly impaired by the onset of the metabolic syndrome and may be an important contributor to the increased cardiovascular events associated with this mutlifactorial disorder. Despite increasing appreciation for the role of coronary K+ channels in regulation of coronary microvascular function, the contribution of K+ channels to the deleterious influence of metabolic syndrome has not been determined. Accordingly, the overall goal of this investigation was to delineate the mechanistic contribution of K+ channels to coronary microvascular dysfunction in metabolic syndrome. Experiments were performed on Ossabaw miniature swine fed a normal maintenance diet or an excess calorie atherogenic diet that induces the classical clinical features of metabolic syndrome including obesity, insulin resistance, impaired glucose tolerance, dyslipidemia, hyperleptinemia, and atherosclerosis. Experiments involved in vivo studies of coronary blood flow in open-chest anesthetized swine as well as conscious, chronically instrumented swine and in vitro studies in isolated coronary arteries, arterioles, and vascular smooth muscle cells. We found that coronary microvascular dysfunction in the metabolic syndrome significantly impairs coronary vasodilation in response to metabolic as well as ischemic stimuli. This impairment was directly related to decreased membrane trafficking and functional expression of BKCa channels in vascular smooth muscle cells that was accompanied by augmented L-type Ca2+ channel activity and increased intracellular Ca2+ concentration. In addition, we discovered that impairment of coronary vasodilation in the metabolic syndrome is mediated by reductions in the functional contribution of voltage-dependent K+ channels to the dilator response. Taken together, findings from this investigation demonstrate that the metabolic syndrome markedly attenuates coronary microvascular function via the diminished contribution of K+ channels to the overall control of coronary blood flow. Our data implicate impaired functional expression of coronary K+ channels as a critical mechanism underlying the increased incidence of cardiac arrhythmias, infarction and sudden cardiac death in obese patients with the metabolic syndrome.Item Effects of carbon nanotubes on barrier epithelial cells via effects on lipid bilayers(2013) Lewis, Shanta; Blazer-Yost, Bonnie; Petrache, Horia; Witzmann, F. A. (Frank A.); Atkinson, SimonCarbon nanotubes (CNTs) are one of the most common nanoparticles (NP) found in workplace air. Therefore, there is a strong chance that these NP will enter the human body. They have similar physical properties to asbestos, a known toxic material, yet there is limited evidence showing that CNTs may be hazardous to human barrier epithelia. In previous studies done in our laboratory, the effects of CNTs on the barrier function in the human airway epithelial cell line (Calu-3) were measured. Measurements were done using electrophysiology, a technique which measures both transepithelial electrical resistance (TEER), a measure of monolayer integrity, and short circuit current (SCC) which is a measure of vectorial ion transport across the cell monolayer. The research findings showed that select physiologically relevant concentrations of long single-wall (SW) and multi-wall (MW) CNTs significantly decreased the stimulated SCC of the Calu-3 cells compared to untreated cultures. Calu-3 cells showed decreases in TEER when incubated for 48 hours (h) with concentrations of MWCNT ranging from 4µg/cm2 to 0.4ng/cm2 and SWCNT ranging from 4µg/cm2 to 0.04ng/cm2. The impaired cellular function, despite sustained cell viability, led us to investigate the mechanism by which the CNTs were affecting the cell membrane. We investigated the interaction of short MWCNTs with model lipid membranes using an ion channel amplifier, Planar Bilayer Workstation. Membranes were synthesized using neutral diphytanoylphosphatidylcholine (DPhPC) and negatively charged diphytanoylphosphatidylserine (DPhPS) lipids. Gramicidin A (GA), an ion channel reporter protein, was used to measure changes in ion channel conductance due to CNT exposures. Synthetic membranes exposed to CNTs allowed bursts of currents to cross the membrane when they were added to the membrane buffer system. When added to the membrane in the presence of GA, they distorted channel formation and reduced membrane stability.Item Functional Effects of Carbon Nanoparticles on Barrier Epithelial Cell Function(2011-12) Banga, Amiraj; Stauffacher, Cynthia; Blazer-Yost, Bonnie; Witzmann, F. A. (Frank A.); Chernoff, Ellen; Belecky-Adams, Teri; Atkinson, SimonAs mass production of carbon nanoparticles (CNPs) continues to rise, the likelihood of occupational and environmental exposure raises the potential for exposure‐related health hazards. Although many groups have studied the effects of CNPs on biological systems, very few studies have examined the effects of exposure of cells, tissues or organisms to low, physiologically relevant concentrations of CNPs. Three of the most common types of CNPs are single wall nanotubes (SWNT), multi wall nanotubes (MWNT) and fullerenes (C60). We used electrophysiological techniques to test the effects of CNP exposure (40 μg/cm2 – 4 ng/cm2) on barrier function and hormonal responses of well characterized cell lines representing barrier epithelia from the kidney (mpkCCDcl4) and airways (Calu‐3). mpkCCDcl4 is a cell line representing principal cell type that lines the distal nephron in an electrically tight epithelia that aids in salt and water homeostasis and Calu‐3 is one of the few cell lines that produces features of a differentiated, functional human airway epithelium in vivo. These cell lines respond to hormones that regulate salt/water reabsorption (mpkCCDcl4) and chloride secretion (Calu‐3). In mpkCCDcl4 cells, after 48 hour exposure, the transepithelial electrical resistance (TEER) was unaffected by high concentrations (40 – 0.4 μg/cm2) of C60 or SWNT while lower, more relevant levels (< 0.04 μg/cm2) caused a decrease in TEER. MWNT decreased TEER at both high and low concentrations. CNT exposure for 48 hour did not change the transepithelial ion transport in response to anti‐diuretic hormone (ADH). In Calu‐3 cells, after 48 h of exposure to CNPs, fullerenes did not show any effect on TEER whereas the nanotubes significantly decreased TEER over a range of concentrations (4 μg/cm2‐0.004 ng/cm2). The ion transport response to epinephrine was also significantly decreased by the nanotubes but not by fullerenes. To look at the effect of exposure times, airway cells were exposed to same concentrations of CNPs for 24 and 1h. While the 48 h and 24 h exposures exhibited similar effects, there was no effect seen after 1h in terms of TEER or hormonal responses. In both the cell lines the magnitude of the transepithelial resistance change does not indicate a decrease in cellular viability but would be most consistent with more subtle changes (e.g., modifications of the cytoskeleton or changes in the composition of the cellular membrane). These changes in both the cell lines manifested as an inverse relationship with CNP concentration, were further corroborated by an inverse correlation between dose and changes in protein expression as indicated by proteomic analysis. These results indicate a functional impact of CNPs on epithelial cells at concentrations lower than have been previously studied and suggest caution with regard to increasing CNP levels due to increasing environmental pollution.Item Increased PIEZO1 Expression Is Associated with Worse Clinical Outcomes in Hormone-Receptor-Negative Breast Cancer Patients(MDPI, 2024-02-06) Poole, Rylee Ann; Wang, Qingfei; Ray, Alo; Takabe, Kazuaki; Opyrchal, Mateusz; Katsuta, Eriko; Medicine, School of MedicinePIEZO1 plays a crucial role in the human body as a mechanosensory ion channel. It has been demonstrated that PIEZO1 is important in tissue development and regulating many essential physiological processes. Studies have suggested that the PIEZO1 ion channel plays a role in invasion and progression in cancer; elevated levels of PIEZO1 have been correlated with increased migration in breast cancer cells, chemo-resistance and invasion in gastric cancer cells, and increased invasion of osteosarcoma cells. In addition, high PIEZO1 expression levels were correlated with a worse prognosis in glioma patients. On the other hand, studies in lung cancer have attributed high PIEZO1 levels to better patient outcomes. However, the clinical impact of PIEZO1 in breast cancer is not well characterized. Therefore, our goal was to determine the clinical relevance of PIEZO1 in breast cancer. An analysis of breast cancer data from The Cancer Genome Atlas (TCGA) was conducted to investigate PIEZO1 expression levels and correlation to survival, followed by validation in an independent dataset, GSE3494. We also performed gene set enrichment analysis (GSEA) and pathway enrichment analysis. We also analyzed the immune cell composition in breast tumors from TCGA through a CIBERSORT algorithm. Our results demonstrated that the PIEZO1 expression levels are higher in hormone-receptor (HR)-negative than in HR-positive cohorts. High PIEZO1 expression is correlated with a significant decrease in survival in HR-negative cohorts, especially in triple-negative breast cancer (TNBC), suggesting that PIEZO1 could be utilized as a prognostic biomarker in HR-negative breast cancer. GSEA showed that various signaling pathways associated with more invasive phenotypes and resistance to treatments, including epithelial-mesenchymal transition (EMT), hypoxia, and multiple signaling pathways, are enriched in high-PIEZO1 HR-negative tumors. Our results also demonstrated a decrease in CD8+ and CD4+ T cell infiltration in high-PIEZO1 HR-negative tumors. Further investigations are necessary to elucidate the mechanistic roles of PIEZO1 in HR-negative breast cancer.Item Regulation of Coronary Blood Flow(Wiley, 2017-03-16) Goodwill, Adam G.; Dick, Gregory M.; Kiel, Alexander M.; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicineThe heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.