- Browse by Subject
Browsing by Subject "Ion Transport"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Effect of the mycotoxin, ochratoxin A, on hormone-stimulated ion transport in a cultured cell model of the renal principal cell(2005-04) Blazer-Yost, Bonnie; West, T. Aaron; Stack, Jamie; Peck, Kerrie; Lahr, Thomas F.; Gekle, MichaelThe mycotoxin ochratoxin A (OTA) is a common contaminant of many foodstuffs and, consequently, is present in a large proportion of tested populations of humans and commercial animals. The predominant effects of OTA are manifested in the kidney where the severity varies from salt wasting to renal carcinoma formation in a concentration-dependent fashion. The MDCK-C7 renal cell culture model responds to various hormones known to regulate electrolyte and fluid balance and was used as a model to study the chronic effects of an acute exposure to low dose OTA. The natriferic hormones aldosterone and insulin-like growth factor 1 (IGF1) both stimulate Na(+) flux in a reabsorptive direction via activation of the epithelial Na(+) channel (ENaC). In contrast, anti-diuretic hormone (ADH) stimulates three separate and temporally distinct ion transport responses, one of which is Na(+) reabsorption. Treatment of MDCK-C7 cells with OTA (100 nM) for 48 h selectively and irreversibly inhibits hormone-stimulated Na(+) reabsorption via ENaC. This effect was retained for 48 cell passages after the removal of the toxin and mimics the OTA-induced salt-wasting that has been documented in clinical studies. These studies indicate that the effect of the toxin is genomic and therefore, likely to be long lasting in exposed animals and humans.Item Potassium transport in frog stomach muscle(1965) Fariduddin, K. M.Item PPARγ Agonists, Modulation of Ion Transporters, and Fluid Retention(2009) Nofziger, Charity; Blazer-Yost, BonnieItem Role of Choroid Plexus TRPV4 Channel in Health and Disease(2022-08) Hochstetler, Alexandra; Blazer-Yost, Bonnie L; Berbari, Nicolas; Baucum II, AJ; Roper, Randall; Raskin, JeffreyPediatric hydrocephalus is a complex neurological condition associated with a pathological accumulation of cerebrospinal fluid (CSF), typically within the brain ventricular system. Pediatric hydrocephalus can be primary (due to genetic abnormalities or idiopathic causes), or secondary to injuries such as hemorrhage, trauma, or infection. The current permanent treatment paradigms for pediatric hydrocephalus are exclusively surgical and include the diversion of CSF via shunt or ventriculostomy. These surgical interventions are wrought with failures, burdening both the United States healthcare system and patients with repeat neurosurgical procedures. Thus, the development of nonsurgical interventions to treat hydrocephalus represents a clinically unmet need. To study hydrocephalus, we use a genetic rat model of primary neonatal hydrocephalus, the Tmem67P394L mutant. In several proof-of-concept studies, we identify antagonism of the transient receptor potential vanilloid 4 (TRPV4) channel and associated upstream regulatory kinase, serum-andglucocorticoid-induced kinase 1 (SGK1) as therapeutics for the treatment of hydrocephalus. Using in vitro models of the choroid plexus epithelium, the tissue which produces CSF, we show compelling proof-of-mechanism for TRPV4 antagonism and SGK1 inhibition at preventing CSF production. Therefore, the studies in this dissertation provide substantive evidence on the role of TRPV4 in the choroid plexus in health and disease.