- Browse by Subject
Browsing by Subject "Intrinsic excitability"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Contrasting Effects of Adolescent and Early-Adult Ethanol Exposure on Prelimbic Cortical Pyramidal Neurons(Elsevier, 2020) Galaj, Ewa; Guo, Changyong; Huang, Donald; Ranaldi, Robert; Ma, Yao-Ying; Pharmacology and Toxicology, School of MedicineBackground: Adolescence and early-adulthood are vulnerable developmental periods during which binge drinking can have long-lasting effects on brain function. However, little is known about the effects of binge drinking on the pyramidal cells of the prelimbic cortex (PrL) during early and protracted withdrawal periods. Methods: In the present study, we performed whole-cell patch clamp recordings and dendritic spine staining to examine the intrinsic excitability, spontaneous excitatory post-synaptic currents (sEPSCs), and spine morphology of pyramidal cells in the PrL from rats exposed to chronic intermittent ethanol (CIE) during adolescence or early-adulthood. Results: Compared to chronic intermittent water (CIW)-treated controls, the excitability of PrL-L5 pyramidal neurons was significantly increased 21 days after adolescent CIE but decreased 21 days after early-adult CIE. No changes of excitability in PrL Layer (L) 5 were detected 2 days after either adolescent or early-adulthood CIE. Interestingly, decreases in sEPSC amplitude and increases in thin spines ratio were detected 2 days after adolescent CIE. Furthermore, decreased frequency and amplitude of sEPSCs, accompanied by a decrease in the density of total spines and non-thin spines were observed 21 days after adolescent CIE. In contrast, increased frequency and amplitude of sEPSCs, accompanied by increased densities of total spines and non-thin spines were found 21 days after early adult CIE. Conclusion: CIE produced prolonged neuronal and synaptic alterations in PrL-L5, and the developmental stage, i.e., adolescence vs. early-adulthood when subjects receive CIE, is a key factor in determining the direction of these changes.Item Differential Alterations of Insular Cortex Excitability after Adolescent or Adult Chronic Intermittent Ethanol Administration in Male Rats(Wiley, 2021-02) Luo, Yi-Xiao; Galaj, Ewa; Ma, Yao-Ying; Pharmacology and Toxicology, School of MedicineAdolescent alcohol drinking, primarily in the form of binge-drinking episodes, is a serious public health concern. Binge drinking in laboratory animals has been modeled by a procedure involving chronic intermittent ethanol (CIE) administration, as compared with chronic intermittent water (CIW). The prolonged effects of adolescent binge alcohol exposure in adults, such as high risk of developing alcohol use disorder, are severe but available treatments in the clinic are limited. One reason is the lack of sufficient understanding about the associated neuronal alterations. The involvement of the insular cortex, particularly the anterior agranular insula (AAI), has emerged as a critical region to explain neuronal mechanisms of substance abuse. This study was designed to evaluate the functional output of the AAI by measuring the intrinsic excitability of pyramidal neurons from male rats 2 or 21 days after adolescent or adult CIE treatment. Decreases in intrinsic excitability in AAI pyramidal neurons were detected 21 days, relative to 2 days, after adolescent CIE. Interestingly, the decreased intrinsic excitability in the AAI pyramidal neurons was observed 2 days after adult CIE, compared to adult CIW, but no difference was found between 2 versus 21 days after adult CIE. These data indicate that, although the AAI is influenced within a limited period after adult but not adolescent CIE, neuronal alterations in AAI are affected during the prolonged period of withdrawal from adolescent but not adult CIE. This may explain the prolonged vulnerability to mental disorders of subjects with an alcohol binge history during their adolescent stage.Item Increased Excitability of Layer 2 Cortical Pyramidal Neurons in the Supplementary Motor Cortex Underlies High Cocaine Seeking Behaviors(Elsevier, 2023) Huang, Donald; Ma, Yao-Ying; Pharmacology and Toxicology, School of MedicineBackground: Most efforts in addiction research have focused on the involvement of the medial prefrontal cortex, including the infralimbic, prelimbic, and anterior cingulate cortical areas, in cocaine-seeking behaviors. However, no effective prevention or treatment for drug relapse is available. Methods: We focused instead on the motor cortex, including both the primary and supplementary motor areas (M1 and M2, respectively). Addiction risk was evaluated by testing cocaine seeking after intravenous self-administration (IVSA) of cocaine in Sprague Dawley rats. The causal relationship between the excitability of cortical pyramidal neurons (CPNs) in M1/M2 and addiction risk was explored by ex vivo whole-cell patch clamp recordings and in vivo pharmacological or chemogenetic manipulation. Results: Our recordings showed that on withdrawal day 45 (WD45) after IVSA, cocaine, but not saline, increased the excitability of CPNs in the cortical superficial layers (primarily layer 2, denoted L2) but not in layer 5 (L5) in M2. Bilateral microinjection of the GABAA (gamma-aminobutyric acid A) receptor agonist muscimol to the M2 area attenuated cocaine seeking on WD45. More specifically, chemogenetic inhibition of CPN excitability in L2 of M2 (denoted M2-L2) by the DREADD (designer receptor exclusively activated by designer drugs) agonist compound 21 prevented drug seeking on WD45 after cocaine IVSA. This chemogenetic inhibition of M2-L2 CPNs had no effects on sucrose seeking. In addition, neither pharmacological nor chemogenetic inhibition manipulations altered general locomotor activity. Conclusions: Our results indicate that cocaine IVSA induces hyperexcitability in the motor cortex on WD45. Importantly, the increased excitability in M2, particularly in L2, could be a novel target for preventing drug relapse during withdrawal.