- Browse by Subject
Browsing by Subject "Intracranial pressure"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Can the Treatment of Normal-Pressure Hydrocephalus Induce Normal-Tension Glaucoma? A Narrative Review of a Current Knowledge(MDPI, 2021-03) Hamarat, Yasin; Bartusis, Laimonas; Deimantavicius, Mantas; Lucinskas, Paulius; Siaudvytyte, Lina; Zakelis, Rolandas; Harris, Alon; Mathew, Sunu; Siesky, Brent; Janulevicienė, Ingrida; Ragauskas, Arminas; Radiology and Imaging Sciences, School of MedicineVentriculoperitoneal shunt placement is the most commonly used treatment of normal-pressure hydrocephalus (NPH). It has been hypothesized that normal-tension glaucoma (NTG) is caused by the treatment of NPH by using the shunt to reduce intracranial pressure (ICP). The aim of this study is to review the literature published regarding this hypothesis and to emphasize the need for neuro-ophthalmic follow-up for the concerned patients. The source literature was selected from the results of an online PubMed search, using the keywords "hydrocephalus glaucoma" and "normal-tension glaucoma shunt". One prospective study on adults, one prospective study on children, two retrospective studies on adults and children, two case reports, three review papers including medical hypotheses, and one prospective study on monkeys were identified. Hypothesis about the association between the treatment of NPH using the shunt to reduce ICP and the development of NTG were supported in all reviewed papers. This suggests that a safe lower limit of ICP for neurological patients, especially shunt-treated NPH patients, should be kept. Thus, we proposed to modify the paradigm of safe upper ICP threshold recommended in neurosurgery and neurology into the paradigm of safe ICP corridor applicable in neurology and ophthalmology, especially for shunt-treated hydrocephalic and glaucoma patients.Item Cushing's ulcer: Further reflections(Wolters Kluwer, 2015-04) Kemp, William J.; Bashir, Asif; Dababneh, Haitham; Cohen-Gadol, Aaron A.; Department of Neurological Surgery, IU School of MedicineBACKGROUND: Brain tumors, traumatic head injury, and other intracranial processes including infections, can cause increased intracranial pressure and lead to overstimulation of the vagus nerve. As a result, increased secretion of gastric acid may occur which leads to gastro-duodenal ulcer formation known as Cushing's ulcer. METHODS: A review of original records of Dr. Harvey Cushing's patients suffering from gastro-duodenal ulcers was performed followed by a discussion of the available literature. We also reviewed the clinical records of the patients never reported by Cushing to gain his perspective in describing this phenomenon. Dr. Cushing was intrigued to investigate gastro-duodenal ulcers as he lost patients to acute gastrointestinal perforations following successful brain tumor operations. It is indeed ironic that Harvey Cushing developed a gastro-duodenal ulcer in his later years with failing health. RESULTS: Clinically shown by Cushing's Yale Registry, a tumor or lesion can disrupt this circuitry, leading to gastroduodenal ulceration. Cushing said that it was "reasonable to believe that the perforations following posterior fossa cerebellar operations were produced in like fashion by an irritative disturbance either of fiber tracts or vagal centers in the brain stem." CONCLUSION: Harvey Cushing's pioneering work depicted in his Yale registry serves as a milestone for continuing research that can further discern this pathway.Item A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC)(Springer, 2019-12-01) Hawryluk, Gregory W. J.; Aguilera, Sergio; Buki, Andras; Bulger, Eileen; Citerio, Giuseppe; Cooper, D. Jamie; Arrastia, Ramon Diaz; Diringer, Michael; Figaji, Anthony; Gao, Guoyi; Geocadin, Romergryko; Ghajar, Jamshid; Harris, Odette; Hoffer, Alan; Hutchinson, Peter; Joseph, Mathew; Kitagawa, Ryan; Manley, Geoffrey; Mayer, Stephan; Menon, David K.; Meyfroidt, Geert; Michael, Daniel B.; Oddo, Mauro; Okonkwo, David; Patel, Mayur; Robertson, Claudia; Rosenfeld, Jeffrey V.; Rubiano, Andres M.; Sahuquillo, Juan; Servadei, Franco; Shutter, Lori; Stein, Deborah; Stocchetti, Nino; Taccone, Fabio Silvio; Timmons, Shelly; Tsai, Eve; Ullman, Jamie S.; Vespa, Paul; Videtta, Walter; Wright, David W.; Zammit, Christopher; Chesnut, Randall M.; Neurological Surgery, School of MedicineBackground Management algorithms for adult severe traumatic brain injury (sTBI) were omitted in later editions of the Brain Trauma Foundation’s sTBI Management Guidelines, as they were not evidence-based. Methods We used a Delphi-method-based consensus approach to address management of sTBI patients undergoing intracranial pressure (ICP) monitoring. Forty-two experienced, clinically active sTBI specialists from six continents comprised the panel. Eight surveys iterated queries and comments. An in-person meeting included whole- and small-group discussions and blinded voting. Consensus required 80% agreement. We developed heatmaps based on a traffic-light model where panelists’ decision tendencies were the focus of recommendations. Results We provide comprehensive algorithms for ICP-monitor-based adult sTBI management. Consensus established 18 interventions as fundamental and ten treatments not to be used. We provide a three-tier algorithm for treating elevated ICP. Treatments within a tier are considered empirically equivalent. Higher tiers involve higher risk therapies. Tiers 1, 2, and 3 include 10, 4, and 3 interventions, respectively. We include inter-tier considerations, and recommendations for critical neuroworsening to assist the recognition and treatment of declining patients. Novel elements include guidance for autoregulation-based ICP treatment based on MAP Challenge results, and two heatmaps to guide (1) ICP-monitor removal and (2) consideration of sedation holidays for neurological examination. Conclusions Our modern and comprehensive sTBI-management protocol is designed to assist clinicians managing sTBI patients monitored with ICP-monitors alone. Consensus-based (class III evidence), it provides management recommendations based on combined expert opinion. It reflects neither a standard-of-care nor a substitute for thoughtful individualized management.Item Wearable Sensing System for NonInvasive Monitoring of Intracranial BioFluid Shifts in Aerospace Applications(MDPI, 2023-01-14) Griffith, Jacob L.; Cluff, Kim; Downes, Grant M.; Eckerman, Brandon; Bhandari, Subash; Loflin, Benjamin E.; Becker, Ryan; Alruwaili, Fayez; Mohammed, Noor; Orthopaedic Surgery, School of MedicineThe alteration of the hydrostatic pressure gradient in the human body has been associated with changes in human physiology, including abnormal blood flow, syncope, and visual impairment. The focus of this study was to evaluate changes in the resonant frequency of a wearable electromagnetic resonant skin patch sensor during simulated physiological changes observed in aerospace applications. Simulated microgravity was induced in eight healthy human participants (n = 8), and the implementation of lower body negative pressure (LBNP) countermeasures was induced in four healthy human participants (n = 4). The average shift in resonant frequency was -13.76 ± 6.49 MHz for simulated microgravity with a shift in intracranial pressure (ICP) of 9.53 ± 1.32 mmHg, and a shift of 8.80 ± 5.2097 MHz for LBNP with a shift in ICP of approximately -5.83 ± 2.76 mmHg. The constructed regression model to explain the variance in shifts in ICP using the shifts in resonant frequency (R2 = 0.97) resulted in a root mean square error of 1.24. This work demonstrates a strong correlation between sensor signal response and shifts in ICP. Furthermore, this study establishes a foundation for future work integrating wearable sensors with alert systems and countermeasure recommendations for pilots and astronauts.Item Worsening orbital roof “blow-in” fractures following traumatic brain injury: A report of two cases(Scientific Scholar, 2024-09-06) Rao, Varun; Gerndt, Clayton H.; Ong, Vera; Strong, Edward Bradley; Shahlaie, Kiarash; Neurological Surgery, School of MedicineBackground: Orbital roof fractures are often the result of high-velocity collisions and are seen in 1-9% of patients with craniofacial trauma. Although the majority of orbital roof fractures are displaced superiorly, a subset results in inferior displacement of fracture fragments, posing a risk for muscle/nerve entrapment and possible blindness. Many of these patients have severe traumatic brain injury (TBI) and, in addition to orbital fractures, also have elevated intracranial pressure (ICP). Management of depressed orbital roof fractures in the setting of severe TBI with elevated ICP represents a management dilemma. Case description: Two cases of severe TBI with associated downward displacement of orbital roof fractures were reviewed. Both cases exhibited elevated ICP correlated with the degree of orbital roof fracture depression. Surgical intervention involving elevation and repair of the fractures was undertaken when there was a significant risk of injury to the extraocular muscles and/or the optic nerve due to the extent of the fracture depression. Conclusion: Depressed orbital roof fractures may migrate in response to changes in ICP. Serial computed tomography scans and eye examinations may aid with determining the need for and timing of surgical intervention.