- Browse by Subject
Browsing by Subject "Intestinal microbiota"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 4033 Evaluating the Effect of Prebiotics on the Gut Microbiome Profile and Beta-cell Function in Newly-Diagnosed Type 1 Diabetes(Cambridge University Press, 2020-07-29) Ismail, Heba M.; Evans-Molina, Carmella; DiMeglio, Linda; Pediatrics, School of MedicineOBJECTIVES/GOALS: Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β-cells. Emerging data suggest that differences in intestinal microbiota might be critically involved both in autoimmunity and in glucose homeostasis. The prebiotic high amylose maize starch (HAMS) alters the gut microbiome profile and metabolites positively by increasing production of beneficial short chain fatty acids (SCFAs) that have significant anti-inflammatory effects. HAMS also improves glycemia, insulin sensitivity and secretion in healthy non-diabetic adults. Further, an acetylated and butyrylated form of HAMS (HAMS-AB) that increases beneficial SCFA production, namely acetate and butyrate, has been safe and effective in disease prevention in mouse T1D models. The objective of the proposed study is to assess the effect of administering a prebiotic, such as HAMS-AB, on the gut microbiome profile, SCFA production, glycemia and β-cell function in humans with T1D. METHODS/STUDY POPULATION: We hypothesize that administration of HAMS-AB will (i) improve the gut microbiome profile in humans with T1D, (ii) increase SCFA production, and (iii) improve β-cell health, β-cell function and overall glycemia. We propose a pilot randomized controlled cross-over trial of HAMS-AB in 12 youth with newly-diagnosed T1D. We will use state-of-the-art markers to profile the gut microbiome (using 16S rRNA sequencing), measure stool SCFA levels (using gas chromatography), asses β-cell stress/death (by measuring proinsulin to C-peptide ratios) and glycemia (assessed by continuous glucose monitoring and HbA1c measurements). RESULTS/ANTICIPATED RESULTS: We expect that the use of HAMS-AB in newly diagnosed youth with type 1 diabetes will alter the gut microbiome profile (thus increasing the number of fermenters and SCFA levels), β-cell function and glycemia in humans with T1D. DISCUSSION/SIGNIFICANCE OF IMPACT: Given the unknown long-term effects of immune-modulatory therapy on those at risk for or those diagnosed with T1D, the use of a prebiotic such as HAMS-AB offers a simple, safe, yet inexpensive and tolerated dietary alternative approach to mitigating disease.Item Fecal bile acids, fecal short-chain fatty acids, and the intestinal microbiota in patients with irritable bowel syndrome (IBS) and control volunteers(Cambridge University Press, 2018-06) Shin, Andrea; Nelson, David; Wo, John; Camilleri, Michael; James-Stevenson, Toyia; Siwiec, Robert; Bohm, Matthew; Gupta, Anita; Medicine, School of MedicineOBJECTIVES/SPECIFIC AIMS: Objectives and goals of this study will be to: (1) compare fecal microbiota and fecal organic acids in irritable bowel syndrome (IBS) patients and controls and (2) investigate the association between colonic transit and fecal microbiota in IBS patients and controls. METHODS/STUDY POPULATION: We propose an investigation of fecal organic acids, colonic transit and fecal microbiota in 36 IBS patients and 18 healthy controls. The target population will be adults ages 18–65 years meeting Rome IV criteria for IBS (both diarrhea- and constipation-predominant, IBS-D and IBS-C) and asymptomatic controls. Exclusion criteria are: (a) history of microscopic colitis, inflammatory bowel disease, celiac disease, visceral cancer, chronic infectious disease, immunodeficiency, uncontrolled thyroid disease, liver disease, or elevated AST/ALT>2.0× the upper limit of normal, (b) prior radiation therapy of the abdomen or abdominal surgeries with the exception of appendectomy or cholecystectomy >6 months before study initiation, (c) ingestion of prescription, over the counter, or herbal medications affecting gastrointestinal transit or study interpretation within 6 months of study initiation for controls or within 2 days before study initiation for IBS patients, (d) pregnant females, (e) antibiotic usage within 3 months before study participation, (f) prebiotic or probiotic usage within the 2 weeks before study initiation, (g) tobacco users. Primary outcomes will be fecal bile acid excretion and profile, short-chain fatty acid excretion and profile, colonic transit, and fecal microbiota. Secondary outcomes will be stool characteristics based on responses to validated bowel diaries. Stool samples will be collected from participants during the last 2 days of a 4-day 100 g fat diet and split into 3 samples for fecal microbiota, SCFA, and bile acid analysis and frozen. Frozen aliquots will be shipped to the Metabolite Profiling Facility at Purdue University and the Mayo Clinic Department of Laboratory Medicine and Pathology for SCFA and bile acid measurements, respectively. Analysis of fecal microbiota will be performed in the research laboratory of Dr David Nelson in collaboration with bioinformatics expertise affiliated with the Nelson lab. Colonic transit time will be measured with the previously validated method using radio-opaque markers. Generalized linear models will be used as the analysis framework for comparing study endpoints among groups. RESULTS/ANTICIPATED RESULTS: This study seeks to examine the innovative concept that specific microbial signatures are associated with increased fecal excretion of organic acids to provide unique insights on a potential mechanistic link between altered intraluminal organic acids and fecal microbiota. DISCUSSION/SIGNIFICANCE OF IMPACT: Results may lead to development of targets for novel therapies and diagnostic biomarkers for IBS, emphasizing the role of the fecal metabolome.