- Browse by Subject
Browsing by Subject "Interval Censoring"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Building Prediction Models for Dementia: The Need to Account for Interval Censoring and the Competing Risk of Death(2019-08) Marchetti, Arika L.; Bakoyannis, Giorgos; Li, Xiaochun; Gao, Sujuan; Yiannoutsos, ConstantinContext. Prediction models for dementia are crucial for informing clinical decision making in older adults. Previous models have used genotype and age to obtain risk scores to determine risk of Alzheimer’s Disease, one of the most common forms of dementia (Desikan et al., 2017). However, previous prediction models do not account for the fact that the time to dementia onset is unknown, lying between the last negative and the first positive dementia diagnosis time (interval censoring). Instead, these models use time to diagnosis, which is greater than or equal to the true dementia onset time. Furthermore, these models do not account for the competing risk of death which is quite frequent among elder adults. Objectives. To develop a prediction model for dementia that accounts for interval censoring and the competing risk of death. To compare the predictions from this model with the predictions from a naïve analysis that ignores interval censoring and the competing risk of death. Methods. We apply the semiparametric sieve maximum likelihood (SML) approach to simultaneously model the cumulative incidence function (CIF) of dementia and death while accounting for interval censoring (Bakoyannis, Yu, & Yiannoutsos, 2017). The SML is implemented using the R package intccr. The CIF curves of dementia are compared for the SML and the naïve approach using a dataset from the Indianapolis Ibadan Dementia Project. Results. The CIF from the SML and the naïve approach illustrated that for healthier individuals at baseline, the naïve approach underestimated the incidence of dementia compared to the SML, as a result of interval censoring. Individuals with a poorer health condition at baseline have a CIF that appears to be overestimated in the naïve approach. This is due to older individuals with poor health conditions having an elevated risk of death. Conclusions. The SML method that accounts for the competing risk of death along with interval censoring should be used for fitting prediction/prognostic models of dementia to inform clinical decision making in older adults. Without controlling for the competing risk of death and interval censoring, the current models can provide invalid predictions of the CIF of dementia.Item Semiparametric regression on cumulative incidence function with interval-censored competing risks data and missing event types(Biostatistics, 2021) Park, Jun; Bakoyannis, Giorgos; Zhang, Ying; Yiannoutsos, Constantin T.Competing risk data are frequently interval-censored, that is, the exact event time is not observed but only known to lie between two examination time points such as clinic visits. In addition to interval censoring, another common complication is that the event type is missing for some study participants. In this article, we propose an augmented inverse probability weighted sieve maximum likelihood estimator for the analysis of interval-censored competing risk data in the presence of missing event types. The estimator imposes weaker than usual missing at random assumptions by allowing for the inclusion of auxiliary variables that are potentially associated with the probability of missingness. The proposed estimator is shown to be doubly robust, in the sense that it is consistent even if either the model for the probability of missingness or the model for the probability of the event type is misspecified. Extensive Monte Carlo simulation studies show good performance of the proposed method even under a large amount of missing event types. The method is illustrated using data from an HIV cohort study in sub-Saharan Africa, where a significant portion of events types is missing. The proposed method can be readily implemented using the new function ciregic_aipw in the R package intccr.