- Browse by Subject
Browsing by Subject "Interneurons"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chx10+V2a interneurons in spinal motor regulation and spinal cord injury(Wolters Kluwer, 2023) Li, Wen-Yuan; Deng, Ling-Xiao; Zhai, Feng-Guo; Wang, Xiao-Yu; Li, Zhi-Gang; Wang, Ying; Neurological Surgery, School of MedicineChx10-expressing V2a (Chx10+V2a) spinal interneurons play a large role in the excitatory drive of motoneurons. Chemogenetic ablation studies have demonstrated the essential nature of Chx10+V2a interneurons in the regulation of locomotor initiation, maintenance, alternation, speed, and rhythmicity. The role of Chx10+V2a interneurons in locomotion and autonomic nervous system regulation is thought to be robust, but their precise role in spinal motor regulation and spinal cord injury have not been fully explored. The present paper reviews the origin, characteristics, and functional roles of Chx10+V2a interneurons with an emphasis on their involvement in the pathogenesis of spinal cord injury. The diverse functional properties of these cells have only been substantiated by and are due in large part to their integration in a variety of diverse spinal circuits. Chx10+V2a interneurons play an integral role in conferring locomotion, which integrates various corticospinal, mechanosensory, and interneuron pathways. Moreover, accumulating evidence suggests that Chx10+V2a interneurons also play an important role in rhythmic patterning maintenance, left-right alternation of central pattern generation, and locomotor pattern generation in higher order mammals, likely conferring complex locomotion. Consequently, the latest research has focused on postinjury transplantation and noninvasive stimulation of Chx10+V2a interneurons as a therapeutic strategy, particularly in spinal cord injury. Finally, we review the latest preclinical study advances in laboratory derivation and stimulation/transplantation of these cells as a strategy for the treatment of spinal cord injury. The evidence supports that the Chx10+V2a interneurons act as a new therapeutic target for spinal cord injury. Future optimization strategies should focus on the viability, maturity, and functional integration of Chx10+V2a interneurons transplanted in spinal cord injury foci.Item Depression of fast excitatory synaptic transmission in large aspiny neurons of the neostriatum after transient forebrain ischemia(Society for Neuroscience, 2002-12) Pang, Zhi-Ping; Deng, Ping; Ruan, Yi-Wen; Xu, Zao C.; Anatomy and Cell Biology, School of MedicineSpiny neurons in the neostriatum die within 24 hr after transient global ischemia, whereas large aspiny (LA) neurons remain intact. To reveal the mechanisms of such selective cell death after ischemia, excitatory neurotransmission was studied in LA neurons before and after ischemia. The intrastriatally evoked fast EPSCs in LA neurons were depressed < or =24 hr after ischemia. The concentration-response curves generated by application of exogenous glutamate in these neurons were approximately the same before and after ischemia. A train of five stimuli (100 Hz) induced progressively smaller EPSCs, but the proportion of decrease in EPSC amplitude at 4 hr after ischemia was significantly smaller compared with control and at 24 hr after ischemia. Parallel depression of NMDA receptor and AMPA receptor-mediated EPSCs was also observed after ischemia, supporting the involvement of presynaptic mechanisms. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the inhibition of evoked EPSCs at 4 hr after ischemia but not at 24 hr after ischemia. Electron microscopic studies demonstrated that the most presynaptic terminals in the striatum had a normal appearance at 4 hr after ischemia but showed degenerating signs at 24 hr after ischemia. These results indicated that the excitatory neurotransmission in LA neurons was depressed after ischemia via presynaptic mechanisms. The depression of EPSCs shortly after ischemia might be attributable to the enhanced adenosine A1 receptor function on synaptic transmission, and the depression at late time points might result from the degeneration of presynaptic terminals.