ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Interleukin-4"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation
    (Nature Publishing Group, 2014-09) Huang, Stanley Ching-Cheng; Everts, Bart; Ivanova, Yulia; O'Sullivan, David; Nascimento, Marcia; Smith, Amber M.; Beatty, Wandy; Love-Gregory, Latisha; Lam, Wing Y.; O'Neill, Christina M.; Yan, Cong; Du, Hong; Abumrad, Nada A.; Urban, Joseph F.; Artyomov, Maxim N.; Pearce, Erika L.; Pearce, Edward J.; Department of Pathology & Laboratory Medicine, IU School of Medicine
    Alternative (M2) macrophage activation driven through interleukin 4 receptor α (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of fatty acids to support this metabolic program has not been clear. We show that the uptake of triacylglycerol substrates via CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation (OXPHOS), enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth, and blocked protective responses against this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.
  • Loading...
    Thumbnail Image
    Item
    Generation of mice expressing a constitutively active stat6: a model for the analysis of IL-4 signaling and tumor progression
    (2003) Bruns, Heather
  • Loading...
    Thumbnail Image
    Item
    Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter
    (American Association for the Advancement of Science, 2014-08) Reese, T.A.; Wakeman, B.S.; Choi, H.S.; Hufford, M.M.; Huang, S.C.; Zhang, X.; Buck, M.D.; Jezewski, A.; Kambal, A.; Liu, C.Y.; Goel, G.; Murray, P.J.; Xavier, R.J.; Kaplan, M.H.; Renne, R.; Speck, S.H.; Artyomov, M.N.; Pearce, E.J.; Virgin, H.W.; Pediatrics, School of Medicine
    Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine γ-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-γ (IFNγ) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNγ reactivated latent murine γ-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status.
  • Loading...
    Thumbnail Image
    Item
    An Inhibitory Role for the Transcription Factor Stat3 in Controlling IL-4 and Bcl6 Expression in Follicular Helper T cells
    (American Association of Immunologists, 2015-09) Wu, Hao; Xu, Lin-lin; Teuscher, Paulla; Liu, Hong; Kaplan, Mark H.; Dent, Alexander L.; Department of Microbiology and Immunology, IU School of Medicine
    The transcription factor Bcl6 is required for the development of the follicular helper T (TFH) cells. Cytokines that activate Stat3 promote Bcl6 expression and TFH cell differentiation. Previous studies with an acute virus infection model showed that TFH cell differentiation was decreased but not blocked in the absence of Stat3. In this study, we further analyzed the role of Stat3 in TFH cells. In Peyer’s patches (PPs), we found that compared to wild-type, Stat3-deficient TFH cells developed at a 25% lower rate, and expressed increased IFNγ and IL-4. While PP germinal center B (GCB) cells developed at normal numbers with Stat3-deficient TFH cells, IgG1 class switching was greatly increased. Following immunization with Sheep Red Blood Cells (SRBC), splenic Stat3-deficient TFH cells developed at a slower rate than in control mice and splenic GCB cells were markedly decreased. Stat3-deficient TFH cells developed poorly in a competitive bone marrow chimera environment. Under all conditions tested, Stat3-deficient TFH cells over-expressed both IL-4 and Bcl6, a pattern specific for the TFH cell population. Finally, we found in vitro that repression of IL-4 expression in CD4 T cells by Bcl6 required Stat3 function. Our data indicate that Stat3 can repress the expression of Bcl6 and IL-4 in TFH cells, and that Stat3 regulates the ability of Bcl6 to repress target genes. Overall, we conclude that Stat3 is required to fine-tune the expression of multiple key genes in TFH cells, and that the specific immune environment determines the function of Stat3 in TFH cells.
  • Loading...
    Thumbnail Image
    Item
    PARP-14 Binds Specific DNA Sequences to Promote Th2 Cell Gene Expression
    (Public Library of Science, 2013-12-20) Riley, Jonathan P.; Kulkarni, Aishwarya; Mehrotra, Purvi; Koh, Byunghee; Perumal, Narayanan B.; Kaplan, Mark H.; Goenka, Shreevrat; Pediatrics, School of Medicine
    PARP-14, a member of the poly ADP-ribose polymerase super family, promotes T helper cell 2 (Th2) differentiation by regulating interleukin-4 (IL-4) and STAT6-dependent transcription. Yet, whether PARP-14 globally impacts gene regulation has not been determined. In this report, using an RNA pol II ChIP-seq approach, we identify genes in Th2 cells that are regulated by PARP-14, and either dependent or independent of ADP-ribosyltransferase catalytic activity. Our data demonstrate that PARP-14 enhances the expression of Th2 genes as it represses the expression of Th1-associated genes. Among the relevant targets are Signal Transducer and Activator of Transcription genes required for polarizing Th1 and Th2 cells. To define a mechanism for PARP-14 function, we use an informatics approach to identify putative PARP-14 DNA binding sites. Two putative PARP-14 binding motifs are identified in multiple Th2 cytokine genes, and we demonstrate that PARP-14 interacts with each motif using in vitro binding assays. Taken together our results indicate that PARP-14 is an important factor for T helper cell differentiation and it binds to specific DNA sequences to mediate its function.
  • Loading...
    Thumbnail Image
    Item
    Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mic
    (American Society of Hematology, 2018-09-06) Capitano, Maegan; Zhao, Liang; Cooper, Scott; Thorsheim, Chelsea; Suzuki, Aae; Huang, Xinxin; Dent, Alexander L.; Marks, Michael S.; Abrams, Charles S.; Broxmeyer, Hal E.; Microbiology and Immunology, School of Medicine
    We hypothesized that megakaryocyte (MK) phosphoinositide signaling mediated by phosphatidylinositol transfer proteins (PITPs) contributes to hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) regulation. Conditional knockout mice lacking PITPs specifically in MKs and platelets (pitpα-/- and pitpα-/-/β-/-) bone marrow (BM) manifested decreased numbers of HSCs, MK-erythrocyte progenitors, and cycling HPCs. Further, pitpα-/-/β-/- BM had significantly reduced engrafting capability in competitive transplantation and limiting dilution analysis. Conditioned media (CM) from cultured pitpα-/- and pitpα-/-/β-/- BM MKs contained higher levels of transforming growth factor β1 (TGF-β1) and interleukin-4 (IL-4), among other myelosuppressive cytokines, than wild-type BM MKs. Correspondingly, BM flush fluid from pitpα-/- and pitpα-/-/β-/- mice had higher concentrations of TGF-β1. CM from pitpα-/- and pitpα-/-/β-/- MKs significantly suppressed HPC colony formation, which was completely extinguished in vitro by neutralizing anti-TGF-β antibody, and treatment of pitpα-/-/β-/- mice in vivo with anti-TGF-β antibodies completely reverted their defects in BM HSC and HPC numbers. TGF-β and IL-4 synergized to inhibit HPC colony formation in vitro. Electron microscopy analysis of pitpα-/-/β-/- MKs revealed ultrastructural defects with depleted α-granules and large, misshaped multivesicular bodies. Von Willebrand factor and thrombospondin-1, like TGF-β, are stored in MK α-granules and were also elevated in CM of cultured pitpα-/-/β-/- MKs. Altogether, these data show that ablating PITPs in MKs indirectly dysregulates hematopoiesis in the BM by disrupting α-granule physiology and secretion of TGF-β1.
  • Loading...
    Thumbnail Image
    Item
    STAT3 Impairs STAT5 Activation in the Development of IL-9-Secreting T Cells
    (The American Association of Immunologists, Inc., 2016-04-15) Olson, Matthew R.; Verdan, Felipe Fortino; Hufford, Matthew M.; Dent, Alexander L.; Kaplan, Mark H.; Pediatrics, School of Medicine
    Th cell subsets develop in response to multiple activating signals, including the cytokine environment. IL-9-secreting T cells develop in response to the combination of IL-4 and TGF-β, although they clearly require other cytokine signals, leading to the activation of transcription factors including STAT5. In Th17 cells, there is a molecular antagonism of STAT5 with STAT3 signaling, although whether this paradigm exists in other Th subsets is not clear. In this paper, we demonstrate that STAT3 attenuates the ability of STAT5 to promote the development of IL-9-secreting T cells. We demonstrate that production of IL-9 is increased in the absence of STAT3 and cytokines that result in a sustained activation of STAT3, including IL-6, have the greatest potency in repressing IL-9 production in a STAT3-dependent manner. Increased IL-9 production in the absence of STAT3 correlates with increased endogenous IL-2 production and STAT5 activation, and blocking IL-2 responses eliminates the difference in IL-9 production between wild-type and STAT3-deficient T cells. Moreover, transduction of developing Th9 cells with a constitutively active STAT5 eliminates the ability of IL-6 to reduce IL-9 production. Thus, STAT3 functions as a negative regulator of IL-9 production through attenuation of STAT5 activation and function.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University