- Browse by Subject
Browsing by Subject "Interleukin 1β"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons(Society for Neuroscience, 1997-02-01) Nicol, Grant D.; Lopshire, John C.; Pafford, Carl M.; Pharmacology and Toxicology, School of MedicineThe capacity of the proinflammatory cytokines, tumor necrosis factor alpha (TNF alpha) and interleukin 1 beta (IL-1 beta), to modulate the sensitivity of isolated sensory neurons grown in culture to the excitatory chemical agent capsaicin was examined. Alterations in capsaicin sensitivity were assessed by quantifying the number of neurons labeled with cobalt after exposure to capsaicin and by recording the whole-cell response from a single neuron to the focal application of capsaicin. A 24 hr pretreatment of the neuronal cultures with TNF alpha (10 or 50 ng/ml), but not IL-1 beta (10 or 50 ng/ml), produced a concentration-dependent increase in the number of cobalt-labeled neurons after exposure to 100 nM capsaicin. The peak increase in the number of labeled neurons was attained after a 4 hr treatment with 10 ng/ml TNF alpha. Similarly, pretreatment with TNF alpha (10 ng/ml for 4, 12, and 24 hr) produced a greater than twofold increase in the average peak amplitude of the inward current evoked by 100 nM capsaicin. Both the TNF alpha-induced increase in labeling and current amplitude were blocked by treating the neuronal cultures with indomethacin before the addition of TNF alpha. Enhancement of the capsaicin-evoked current also was blocked by the specific cyclo-oxygenase-2 inhibitor SC-236. These results indicate that TNF alpha can enhance the sensitivity of sensory neurons to the excitation produced by capsaicin and that this enhancement likely is mediated by the neuronal production of prostaglandins. Isolated sensory neurons grown in culture may prove to be a useful model system in which to explore how prolonged exposure to mediators associated with chronic inflammation alter the regulatory pathways that modulate the excitability of the nervous system.Item Up-regulation of P2X7 Receptors Contributes to Spinal Microglial Activation and the Development of Pain Induced by BmK-I(Springer, 2019-02-28) Zhou, Jingjing; Zhang, Xiaoxue; Zhou, You; Wu, Bin; Tan, Zhi-Yong; Pharmacology and Toxicology, School of MedicinePrevious work has demonstrated that the sensitization of spinal neurons and microglia is important in the development of pain behaviors induced by BmK I, a Na+ channel activator and a major peptide component of the venom of the scorpion Buthus martensi Karsch (BmK). We found that the expression of P2X7 receptors (P2X7Rs) was up-regulated in the ipsilateral spinal dorsal horn after BmK I injection in rats. P2X7R was selectively localized in microglia but not astrocytes or neurons. Similarly, interleukin 1β (IL-1β) was selectively up-regulated in microglia in the spinal dorsal horn after BmK I injection. Intrathecal injection of P2X7R antagonists largely reduced BmK I-induced spontaneous and evoked pain behaviors, and the up-regulation of P2X7R and IL-1β in the spinal cord. These data suggested that the up-regulation of P2X7Rs mediates microglial activation in the spinal dorsal horn, and therefore contributes to the development of BmK I-induced pain.