- Browse by Subject
Browsing by Subject "Intercellular Signaling Peptides and Proteins"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Challenging the catechism of therapeutics for chronic neuropathic pain: targeting CaV2.2 interactions with CRMP2 peptides(Elsevier, 2013-12-17) Feldman, Polina; Khanna, Rajesh; Department of Pharmacology and Toxicology, IU School of MedicineChronic neuropathic pain management is a worldwide concern. Pharmaceutical companies globally have historically targeted ion channels as the therapeutic catechism with many blockbuster successes. Remarkably, no new pain therapeutic has been approved by European or American regulatory agencies over the last decade. This article will provide an overview of an alternative approach to ion channel drug discovery: targeting regulators of ion channels, specifically focusing on voltage-gated calcium channels. We will highlight the discovery of an anti-nociceptive peptide derived from a novel calcium channel interacting partner – the collapsin response mediator protein 2 (CRMP2). In vivo administration of this peptide reduces pain behavior in a number of models of neuropathic pain without affecting sympathetic-associated cardiovascular activity, memory retrieval, sensorimotor function, or depression. A CRMP2-derived peptide analgesic, with restricted access to the CNS, represents a completely novel approach to the treatment of severe pain with an improved safety profile. As peptides now represent one of the fastest growing classes of new drugs, it is expected that peptide targeting of protein interactions within the calcium channel complex may be a paradigm shift in ion channel drug discovery.Item Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers(Elsevier, 2014-12) Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A.; Crabb, David W.; Lai, Xianyin; Witzmann, Frank A.; Department of Medicine, IU School of MedicinePatients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p<0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use.Item Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain(Lippincott, Williams & Wilkins, 2018-10) François-Moutal, Liberty; Dustrude, Erik T.; Wang, Yue; Brustovetsky, Tatiana; Dorame, Angie; Ju, Weina; Moutal, Aubin; Perez-Miller, Samantha; Brustovetsky, Nickolay; Gokhale, Vijay; Khanna, May; Khanna, Rajesh; Pharmacology and Toxicology, School of MedicineWe previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.Item Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells(Elsevier, 2015-05) Kim, Hyojin; Huang, Lan; Critser, Paul J.; Yang, Zhenyun; Chan, Rebecca J.; Wang, Lin; Carlesso, Nadia; Voytik-Harbin, Sherry L.; Bernstein, Irwin D.; Yoder, Mervin C.; Department of Pediatrics, IU School of MedicineBACKGROUND AIMS: Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Because Notch signaling is critical for embryonic blood vessel formation in utero, we hypothesized that Notch pathway activation may enhance cultured ECFC vasculogenic properties in vivo. METHODS: In vitro ECFC stimulation with an immobilized chimeric Notch ligand (Delta-like1(ext-IgG)) led to significant increases in the mRNA and protein levels of Notch regulated Hey2 and EphrinB2 that were blocked by treatment with γ-secretase inhibitor addition. However, Notch stimulated preconditioning in vitro failed to enhance ECFC vasculogenesis in vivo. In contrast, in vivo co-implantation of ECFCs with OP9-Delta-like 1 stromal cells that constitutively expressed the Notch ligand delta-like 1 resulted in enhanced Notch activated ECFC-derived increased vessel density and enlarged vessel area in vivo, an effect not induced by OP9 control stromal implantation. RESULTS: This Notch activation was associated with diminished apoptosis in the exposed ECFC. CONCLUSIONS: We conclude that Notch pathway activation in ECFC in vivo via co-implanted stromal cells expressing delta-like 1 promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC.Item Specific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: implications for the therapeutic potential of lacosamide(Springer-Verlag, 2015-04) Wilson, Sarah M.; Khanna, Rajesh; Department of Pharmacology and Toxicology, IU School of MedicineThe novel antiepileptic drug lacosamide (LCM; SPM927, Vimpat®) has been heralded as having a dual-mode of action through interactions with both the voltage-gated sodium channel and the neurite outgrowth-promoting collapsin response mediator protein 2 (CRMP2). Lacosamide's ability to dampen neuronal excitability through the voltage-gated sodium channel likely underlies its efficacy in attenuating the symptoms of epilepsy (i.e., seizures). While the role of CRMP2 in epilepsy has not been well studied, given the proposed involvement of circuit reorganization in epileptogenesis, the ability of lacosamide to alter CRMP2 function may prove disease modifying. Recently, however, the validity of lacosamide's interaction with CRMP2 has come under scrutiny. In this review, we address the contradictory reports concerning the binding of lacosamide to CRMP2 as well as the ability of lacosamide to directly impact CRMP2 function. Additionally, we address similarly the contradicting reports regarding the potential disease-modifying effect of lacosamide on the development and progression of epilepsy. As the vast majority of antiepileptic drugs influences only the symptoms of epilepsy, the ability to hinder disease progression would be a major breakthrough in efforts to cure or prevent this debilitating syndrome.