ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Intelligent Biology"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The International Conference on Intelligent Biology and Medicine 2019 (ICIBM 2019): conference summary and innovations in genomics
    (Springer BioMed Central, 2019-12-30) Mathé, Ewy; Zhang, Chi; Wang, Kai; Ning, Xia; Guo, Yan; Zhao, Zhongming; Medical and Molecular Genetics, School of Medicine
    The goal of this editorial is to summarize the 2019 International Conference on Intelligent Biology and Medicine (ICIBM 2019) conference that took place on June 9–11, 2019 in The Ohio State University, Columbus, OH, and to provide an introductory summary of the seven articles presented in this supplement issue. ICIBM 2019 hosted four keynote speakers, four eminent scholar speakers, five tutorials and workshops, twelve concurrent sessions and a poster session, totaling 23 posters, spanning state-of-the-art developments in bioinformatics, genomics, next-generation sequencing (NGS) analysis, scientific databases, cancer and medical genomics, and computational drug discovery. A total of 105 original manuscripts were submitted to ICIBM 2019, and after careful review, seven were selected for this supplement issue. These articles cover methods and applications for functional annotations of miRNA targeting, clonal evolution of bacterial cells, gene co-expression networks that describe a given phenotype, functional binding site analysis of RNA-binding proteins, normalization of genome architecture mapping data, sample predictions based on multiple NGS data types, and prediction of an individual’s genetic admixture given exonic single nucleotide polymorphisms data.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University