ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Integrated circuits"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A HIGHLY PRECISE AND LINEAR IC FOR HEAT PULSE BASED THERMAL BIDIRECTIONAL MASS FLOW SENSOR
    (2010) Radadia, Jasmin Dhirajlal; Rizkalla, Maher; Chen, Yaobin; Li, Lingxi
    In this work we have designed and simulated a thermal bi-directional integrated circuit mass flow sensor. The approach used here was an extension to the gas flow model given by Mayer and Lechner. The design features high precision response received from analog integrated circuits. A computational fluid dynamic (CFD) model was designed for simulations with air and water Using COMSOL Multiphysics. Established mathematical models for the heat flow equations including CFD parameters were used within COMSOL simulation(COMSOL Multiphysics, Sweden). Heat pulses of 55 °C for a period of nearly 120 seconds and 50% duty cycles were applied as thermal sources to the flowstream. The boundary conditions of the heat equations at the solid (heating element) fluid interface were set up in the software for the thermal response. The hardware design included one heating element and two sensing elements to detect the bi-directional mass flow. Platinum sensors were used due to their linear characteristics within 0 ºC to 100 ºC range, and their high temperature coefficient(0.00385 Ω/Ω/ºC). Polyimide thinfilm heater was used as the heating element due to its high throughput and good thermal efficiency. Two bridge circuits were used to sense the temperature distribution in the vicinity of the sensing elements. Three high precision instrumentation low power amplifiers with offset voltage ~2.5μV (50μV max) were used for bridge signal amplification and the difference circuit. The difference circuit was used to indicate the flow direction. A LM555 timer chip was utilized to provide the heat pulse period. Simulation and experimental measurements for heat pulses with different amplitude (temperature) were in good agreement. Also, the sensitivity of the flow sensor was observed to remain unaffected with the change in the duty cycle of the heat operation mode.
  • Loading...
    Thumbnail Image
    Item
    Improved Adverse Drug Event Prediction Through Information Component Guided Pharmacological Network Model (IC-PNM)
    (IEEE, 2021) Ji, Xiangmin; Wang, Lei; Hua, Liyan; Wang, Xueying; Zhang, Pengyue; Shendre, Aditi; Feng, Weixing; Li, Jin; Li, Lang; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Improving adverse drug event (ADE) prediction is highly critical in pharmacovigilance research. We propose a novel information component guided pharmacological network model (IC-PNM) to predict drug-ADE signals. This new method combines the pharmacological network model and information component, a Bayes statistics method. We use 33,947 drug-ADE pairs from the FDA Adverse Event Reporting System (FAERS) 2010 data as the training data, and the new 21,065 drug-ADE pairs from FAERS 2011-2015 as the validations samples. The IC-PNM data analysis suggests that both large and small sample size drug-ADE pairs are needed in training the predictive model for its prediction performance to reach an area under the receiver operating characteristic curve (\textAUROC)= 0.82(AUROC)=0.82. On the other hand, the IC-PNM prediction performance improved to \textAUROC= 0.91AUROC=0.91 if we removed the small sample size drug-ADE pairs from the prediction model during validation.
  • Loading...
    Thumbnail Image
    Item
    Low-power ASIC design with integrated multiple sensor system
    (2013-08) Jafarian, Hossein; Varahramyan, Kody; Rizkalla, Maher E.; Agarwal, Mangilal; Shrestha, Sudhir; King, Brian
    A novel method of power management and sequential monitoring of several sensors is proposed in this work. Application specific integrated circuits (ASICs) consisting of analog and digital sub-systems forming a system on chip (SoC) has been designed using complementary metal-oxide-semiconductor (CMOS) technology. The analog sub-system comprises the sensor-drivers that convert the input voltage variations to output pulse-frequency. The digital sub-system includes the system management unit (SMU), counter, and shift register modules. This performs the power-usagemanagement, sensor-sequence-control, and output-data-frame-generation functions. The SMU is the key unit within the digital sub-system is that enables or disables a sensor. It captures the pulse waves from a sensor for 3 clocks out of a 16-clock cycle, and transmits the signal to the counter modules. As a result, the analog sub-system is at on-state for only 3/16th fraction (18 %) of the time, leading to reduced power consumption. Three cycles is an optimal number selected for the presented design as the system is unstable with less than 3 cycles and higher clock cycles results in increased power consumption. However, the system can achieve both higher sensitivity and better stability with increased on-state clock cycles. A current-starved-ring-oscillator generates pulse waves that depend on the sensor input parameter. By counting the number of pulses of a sensor-driver in one clock cycle, a sensor input parameter is converted to digital. The digital sub-system constructs a 16-bit frame consisting of 8-bit sensor data, start and stop bits, and a parity bit. Ring oscillators that drive capacitance and resistance-based sensors use an arrangement of delay elements with two levels of control voltages. A bias unit which provides these two levels of control voltages consists of CMOS cascade current mirror to maximize voltage swing for control voltage level swings which give the oscillator wider tuning range and lower temperature induced variations. The ring oscillator was simulated separately for 250 nm and 180 nm CMOS technologies. The simulation results show that when the input voltage of the oscillator is changed by 1 V, the output frequency changes linearly by 440 MHz for 180 nm technology and 206 MHz for 250 nm technology. In a separate design, a temperature sensitive ring oscillator with symmetrical load and temperature dependent input voltage was implemented. When the temperature in the simulation model was varied from -50C to 100C the oscillator output frequency reduced by 510 MHz for the 250 nm and by 810 MHz for 180 nm CMOS technologies, respectively. The presented system does not include memory unit, thus, the captured sensor data has to be instantaneously transmitted to a remote station, e.g. end user interface. This may result in a loss of sensor data in an event of loss of communication link with the remote station. In addition, the presented design does not include transmitter and receiver modules, and thus necessitates the use of separate modules for the transfer of the data.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University