- Browse by Subject
Browsing by Subject "Integrated Stress Response"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Activation of Gcn2 by Pharmacological Agents Designed to be Inhibitors(2023-01) Carlson, Kenneth Reed; Wek, Ronald C.; Georgiadis, Millie M.; Liu, Yunlong; Staschke, Kirk A.; Turchi, John J.The integrated stress response (ISR) is an important mechanism by which cells confer protection against environmental stresses. Central to the ISR is a collection of related protein kinases that monitor stress conditions, such as Gcn2 (EIF2AK4) that recognizes nutrient limitations, inducing phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Gcn2 phosphorylation of eIF2 lowers bulk protein synthesis, conserving energy and nutrients, coincident with preferential translation of stressadaptive gene transcripts, such as that encoding the Atf4 transcriptional regulator. While Gcn2 is central for cell protection to nutrient stress and its depletion in humans leads to pulmonary disorders, Gcn2 can also contribute to the progression of cancers and facilitate neurological disorders during chronic stress. Consequently, specific ATP-competitive inhibitors of Gcn2 protein kinase have been developed. This thesis reports that one such Gcn2 inhibitor, Gcn2iB, can activate Gcn2, probes the mechanism by which this activation occurs, and compares the mechanism of Gcn2 activation by Gcn2iB to that of uncharged tRNA. In this study, Gcn2 activation was measured in cultured human cells by immunoblot and luciferase reporter assays making use of a genetic complementation assay to assess the contribution of various Gcn2 residues to its activation. Low concentrations of Gcn2iB increase Gcn2 phosphorylation of eIF2 and enhance Atf4 expression and activity. Of importance, Gcn2iB can activate Gcn2 mutants devoid of functional regulatory domains or with certain kinase domain substitutions derived fromGcn2-deficient human patients. Other ATP-competitive inhibitors can also activate Gcn2, although there are differences in their mechanisms of activation. These results provide a cautionary note about the pharmacodynamics of eIF2 kinase inhibitors in therapeutic applications. However, compounds designed to be kinase inhibitors that instead directly activate Gcn2, even loss of function variants, may provide tools to alleviate deficiencies in Gcn2 and other regulators of the ISR.Item The effect of alternative splicing on key regulators of the integrated stress response(2016-08) Alzahrani, Mohammed; Wek, Ronald C.; Goebl, Mark G.; Mosley, Amber L.The protein kinase General control non-derepressible-2 (GCN2) is a key regulator of the Integrated stress response that responds to various stress signals, including nutritional deprivation. As a result of high levels of uncharged tRNAs during amino acid depletion, GCN2 phosphorylates serine-51 of the α subunit of eukaryotic initiation factor-2 (eIF2), a translation factor that delivers initiator tRNA to ribosomes. Phosphorylation of eIF2α inhibits general translation, which conserves energy and nutrients and facilitates reprogramming of gene expression for remediation of stress damage. Phosphorylation of eIF2α also directs preferential translation of specific transcription factors, such as ATF4. ATF4 reprograms gene expression to alleviate stress damage; however, under chronic stress, ATF4 directs the transcriptional expression of CHOP, which can trigger apoptosis. Because multiple stresses can induce eIF2α phosphorylation and translational control in mammals, this pathway is referred to as the Integrated stress response. GCN2 and CHOP are subject to alternative splicing that results in multiple transcripts that differ in the 5'-end of the gene transcripts. However, the effect of the different GCN2 and CHOP isoforms on their function and regulation have not been investigated. Our data suggests that GCN2 is alternatively spliced into five different transcripts and the beta isoform of GCN2 is most abundant. Also alternative splicing of CHOP creates two CHOP transcripts with different 5'-leaders encoding inhibitory upstream open reading frames that are critical for translational control of CHOP during stress. This study suggests that alternative splicing can play an integral role in the implementation and regulation of key factors in the Integrated stress response.Item Human keratinocytes utilize the integrated stress response to adapt to environmental stress(2017-06) Collier, Ann E.; Spandau, Dan F.; Wek, Ronald C.; Travers, Jeffrey B.; Turchi, John J.; Turner, Matthew J.Human skin, consisting of the outer epidermis and inner dermis, serves as a barrier that protects the body from an onslaught of environmental stresses. Keratinocytes in the stratified epidermis undergo sequential differentiation that consists of multiple layers of cells differing in structure and function. Therefore, keratinocytes must not only combat environmental stress, but need to undergo massive changes in gene expression and morphology to form a proper barrier. One mode by which cells cope with stress and differentiation is through phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α-P), which causes global inhibition of protein synthesis coincident with preferential translation of select gene transcripts. Translational repression allows stressed cells to conserve energy and prioritize pro-survival processes to alleviate stress damage. Since eIF2α kinases are each activated by distinct types of stress, this pathway is referred to as the Integrated Stress Response (ISR). We sought to identify the roles of the ISR in the keratinocyte response to the stresses associated with differentiation and ultraviolet B (UVB) irradiation. In this thesis, we show that both general and gene-specific translational control in the ISR are activated following differentiation or UVB irradiation of human keratinocytes. ISR deficiency through genetic modifications or pharmacological interventions caused severe divergence from the appropriate keratinocyte response to differentiation or UVB. Differentiation genes were selectively translated by eIF2α-P, and inhibition of the ISR diminished their induction during differentiation. Furthermore, loss of the eIF2α kinase GCN2 (EIF2AK4) adversely affected the ability of keratinocytes to stratify in three dimensional cultures. Our analysis also revealed a non-canonical ISR response following UVB irradiation, in which downstream factors ATF4 (CREB2) and CHOP (DDIT3/GADD153) were poorly expressed due to repressed transcription, despite preferential translation in response to eIF2α-P. The ISR was cytoprotective during UVB and we found that eIF2α-P was required for a UVB induced G1 arrest, cell fate determination, and DNA repair via a mechanism involving translational control of human CDKN1A (p21 protein) transcript variant 4 mRNA. Collectively, this thesis describes novel roles for the ISR in keratinocyte differentiation and response to UVB, emphasizing the utility of targeting translational control in skin disease therapy.Item Novel targets of eiF2 kinases determine cell fate during the integrated stress response(2014-12) Baird, Thomas; Wek, Ronald C.; Turchi, John J.; Anderson, Ryan; Liu, Yunlong; Quilliam, LawrenceEukaryotic cells rapidly modulate protein synthesis in response to environmental cues through the reversible phosphorylation of eukaryotic initiation factor 2 (eIF2α~P) by a family of eIF2α kinases. The eIF2 delivers initiator Met-tRNAiMet to the translational apparatus, and eIF2α~P transforms its function from a translation initiation factor into a competitive inhibitor of the guanine nucleotide exchange factor (GEF) eIF2B, which is responsible for the recycling of eIF2-GDP to the translationally-competent eIF2-GTP state. Reduced eIF2-GTP levels lower general protein synthesis, which allows for the conservation of energy and nutrients, and a restructuring of gene expression. Coincident with global translational control, eIF2α~P directs the preferential translation of mRNA encoding ATF4, a transcriptional activator of genes important for stress remediation. The term Integrated Stress Response (ISR) describes this pathway in which multiple stresses converge to phosphorylate eIF2α and enhance synthesis of ATF4 and its downstream effectors. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2α~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKα as being subject to both translational and transcriptional induction during eIF2α~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKα mRNA involves the stress-induced relief of two inhibitory uORFs in the 5’-leader of the transcript. Also identified as being subject to preferential translation is mRNA encoding the bifunctional aminoacyl tRNA synthetase EPRS. During eIF2α~P, translational regulation of EPRS is suggested to occur through the bypass of a non-canonical upstream ORF encoded by a CUG start codon, highlighting the diversity by which upstream translation initiation events can regulate expression of a downstream coding sequence. This body of work provides for a better understanding of how translational control during stress is modulated genome-wide and for the processes by which this mode of gene regulation in the ISR contributes to cell fate.