- Browse by Subject
Browsing by Subject "Insecticide"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A Broad-Based Mosquito Yeast Interfering RNA Pesticide Targeting Rbfox1 Represses Notch Signaling and Kills Both Larvae and Adult Mosquitoes(MDPI, 2021-09-28) Mysore, Keshava; Sun, Longhua; Hapairai, Limb K.; Wang, Chien-Wei; Roethele, Joseph B.; Igiede, Jessica; Scheel, Max P.; Scheel, Nicholas D.; Li, Ping; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicinePrevention of mosquito-borne infectious diseases will require new classes of environmentally safe insecticides and novel mosquito control technologies. Saccharomyces cerevisiae was engineered to express short hairpin RNA (shRNA) corresponding to mosquito Rbfox1 genes. The yeast induced target gene silencing, resulting in larval death that was observed in both laboratory and outdoor semi-field trials conducted on Aedes aegypti. High levels of mortality were also observed during simulated field trials in which adult females consumed yeast delivered through a sugar bait. Mortality correlated with defects in the mosquito brain, in which a role for Rbfox1 as a positive regulator of Notch signaling was identified. The larvicidal and adulticidal activities of the yeast were subsequently confirmed in trials conducted on Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus, yet the yeast had no impact on survival of select non-target arthropods. These studies indicate that yeast RNAi pesticides targeting Rbfox1 could be further developed as broad-based mosquito larvicides and adulticides for deployment in integrated biorational mosquito control programs. These findings also suggest that the species-specificity of attractive targeted sugar baits, a new paradigm for vector control, could potentially be enhanced through RNAi technology, and specifically through the use of yeast-based interfering RNA pesticides.Item Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes(Springer Nature, 2019-05-22) Mysore, Keshava; Li, Ping; Wang, Chien-Wei; Hapairai, Limb K.; Scheel, Nicholas D.; Realey, Jacob S.; Sun, Longhua; Severson, David W.; Wei, Na; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineBACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control.Item Characterization of an adulticidal and larvicidal interfering RNA pesticide that targets a conserved sequence in mosquito G protein-coupled dopamine 1 receptor genes(Elsevier, 2020) Hapairai, Limb K.; Mysore, Keshava; Sun, Longhua; Li, Ping; Wang, Chien-Wei; Scheel, Nicholas D.; Lesnik, Alexandra; Scheel, Max P.; Igiede, Jessica; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineG protein-coupled receptors (GPCRs), key regulators of a variety of critical biological processes, are attractive targets for insecticide development. Given the importance of these receptors in many organisms, including humans, it is critical that novel pesticides directed against GPCRs are designed to be species-specific. Here, we present characterization of an interfering RNA pesticide (IRP) targeting the mosquito GPCR-encoding dopamine 1 receptor (dop1) genes. A small interfering RNA corresponding to dop1 was identified in a screen for IRPs that kill Aedes aegypti during both the adult and larval stages. The 25 bp sequence targeted by this IRP is conserved in the dop1 genes of multiple mosquito species, but not in non-target organisms, indicating that it could function as a biorational mosquito insecticide. Aedes aegypti adults treated through microinjection or attractive toxic sugar bait delivery of small interfering RNA corresponding to the target site exhibited severe neural and behavioral defects and high levels of adult mortality. Likewise, A. aegypti larval consumption of dried inactivated yeast tablets prepared from a Saccharomyces cerevisiae strain engineered to express short hairpin RNA corresponding to the dop1 target site resulted in severe neural defects and larval mortality. Aedes albopictus and Anopheles gambiae adult and larval mortality was also observed following treatment with dop1 IRPs, which were not toxic to non-target arthropods. The results of this investigation indicate that dop1 IRPs can be used for species-specific targeting of dop1 GPCRs and may represent a new biorational strategy for control of both adult and larval mosquitoes.Item Correction: Mysore et al. A Broad-Based Mosquito Yeast Interfering RNA Pesticide Targeting Rbfox1 Represses Notch Signaling and Kills Both Larvae and Adult Mosquitoes. Pathogens 2021, 10, 1251(MDPI, 2022-08-23) Mysore, Keshava; Sun, Longhua; Hapairai, Limb K.; Wang, Chien-Wei; Roethele, Joseph B.; Igiede, Jessica; Scheel, Max P.; Scheel, Nicholas D.; Li, Ping; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineIn the original publication [1], there was a mistake in Figure 1 as published. The wrong graph was inadvertently included in panel 1f (dose–response curve). Additionally, the original image for the gel shown in panel 1a is now included in the Supplementary Materials.Item Demonstration of RNAi Yeast Insecticide Activity in Semi-Field Larvicide and Attractive Targeted Sugar Bait Trials Conducted on Aedes and Culex Mosquitoes(MDPI, 2023-12-15) Stewart, Akilah T. M.; Mysore, Keshava; Njoroge, Teresia M.; Winter, Nikhella; Shui Feng, Rachel; Singh, Satish; James, Lester D.; Singkhaimuk, Preeraya; Sun, Longhua; Mohammed, Azad; Oxley, James D.; Duckham, Craig; Ponlawat, Alongkot; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineEco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.Item Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management(MDPI, 2023-06-28) Njoroge, Teresia Muthoni; Hamid-Adiamoh, Majidah; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineDue to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.Item A Yeast RNA-Interference Pesticide Targeting the Irx Gene Functions as a Broad-Based Mosquito Larvicide and Adulticide(MDPI, 2021-11-02) Mysore, Keshava; Sun, Longhua; Hapairai, Limb K.; Wang, Chien-Wei; Igiede, Jessica; Roethele, Joseph B.; Scheel, Nicholas D.; Scheel, Max P.; Li, Ping; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineConcerns for widespread insecticide resistance and the unintended impacts of insecticides on nontarget organisms have generated a pressing need for mosquito control innovations. A yeast RNAi-based insecticide that targets a conserved site in mosquito Irx family genes, but which has not yet been identified in the genomes of nontarget organisms, was developed and characterized. Saccharomyces cerevisiae constructed to express short hairpin RNA (shRNA) matching the target site induced significant Aedes aegypti larval death in both lab trials and outdoor semi-field evaluations. The yeast also induced high levels of mortality in adult females, which readily consumed yeast incorporated into an attractive targeted sugar bait (ATSB) during simulated field trials. A conserved requirement for Irx function as a regulator of proneural gene expression was observed in the mosquito brain, suggesting a possible mode of action. The larvicidal and adulticidal properties of the yeast were also verified in Aedes albopictus, Anopheles gambiae, and Culexquinquefasciatus mosquitoes, but the yeast larvicide was not toxic to other nontarget arthropods. These results indicate that further development and evaluation of this technology as an ecofriendly control intervention is warranted, and that ATSBs, an emerging mosquito control paradigm, could potentially be enriched through the use of yeast-based RNAi technology.