- Browse by Subject
Browsing by Subject "Inhaled nitric oxide"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Inhaled nitric oxide and cognition in pediatric severe malaria: A randomized double-blind placebo controlled trial(Public Library of Science, 2018-01-25) Bangirana, Paul; Conroy, Andrea L.; Opoka, Robert O.; Hawkes, Michael T.; Hermann, Laura; Miller, Christopher; Namasopo, Sophie; Liles, W. Conrad; John, Chandy C.; Kain, Kevin C.; Pediatrics, School of MedicineBACKGROUND: Severe malaria is a leading cause of acquired neurodisability in Africa and is associated with reduced nitric oxide (NO) bioavailability. A neuroprotective role for inhaled NO has been reported in animal studies, and administration of inhaled NO in preterm neonates with respiratory distress syndrome is associated with a 47% reduced risk of cognitive impairment at two years of age. METHODS: A randomized double-blind placebo-controlled trial of inhaled NO versus placebo as an adjunctive therapy for severe malaria was conducted in Uganda between 2011 and 2013. Children received study gas for a maximum 72 hours (inhaled NO, 80 parts per million; room air placebo). Neurocognitive testing was performed on children<5 years at 6 month follow-up. The neurocognitive outcomes assessed were overall cognition (a composite of fine motor, visual reception, receptive language, and expressive language), attention, associative memory, and the global executive composite. Main outcomes were attention, associative memory, and overall cognitive ability. RESULTS: Sixty-one children receiving iNO and 59 children receiving placebo were evaluated. Forty-two children (35.0%) were impaired in at least one neurocognitive domain. By intention-to-treat analysis, there were no differences in unadjusted or unadjusted age-adjusted z-scores for overall cognition (β (95% CI): 0.26 (-0.19, 0.72), p = 0.260), attention (0.18 (-0.14, 0.51), p = 0.267), or memory (0.14 (-0.02, 0.30), p = 0.094) between groups by linear regression. Children receiving inhaled NO had a 64% reduced relative risk of fine motor impairment than children receiving placebo (relative risk, 95% CI: 0.36, 0.14-0.96) by log binomial regression following adjustment for anticonvulsant use. CONCLUSIONS: Severe malaria is associated with high rates of neurocognitive impairment. Treatment with inhaled NO was associated with reduced risk of fine motor impairment. These results need to be prospectively validated in a larger study powered to assess cognitive outcomes in order to evaluate whether strategies to increase bioavailable NO are neuroprotective in children with severe malaria.Item Inhaled Nitric Oxide Therapy for Pulmonary Disorders of the Term and Preterm Infant(Elsevier, 2016-10) Sokol, Gregory M.; Konduri, G. Ganesh; Van Meurs, Krisa P.; Pediatrics, School of MedicineThe 21st century began with the FDA approval of inhaled nitric oxide therapy for the treatment of neonatal hypoxic respiratory failure associated with pulmonary hypertension in recognition of the two randomized clinical trials demostrating a significant reduction in the need for extracorporeal support in the term and near-term infant. Inhaled nitric oxide is one of only a few therapeutic agents approved for use through clinical investigations primarily in the neonate. This article provides an overview of the pertinent biology and chemistry of nitric oxide, discusses potential toxicities, and reviews the results of pertinent clinical investigations and large randomized clinical trials including neurodevelopmental follow-up in term and preterm neonates. The clinical investigations conducted by the Eunice Kennedy Shriver NICHD Neonatal Research Network will be discussed and placed in context with other pertinent clinical investigations exploring the efficacy of inhaled nitric oxide therapy in neonatal hypoxic respiratory failure.Item Methemoglobin and nitric oxide therapy in Ugandan children hospitalized for febrile illness: results from a prospective cohort study and randomized double-blind placebo-controlled trial(Springer (Biomed Central Ltd.), 2016-11-04) Conroy, Andrea L.; Hawkes, Michael; Hayford, Kyla; Hermann, Laura; McDonald, Chloe R.; Sharma, Suparna; Namasopo, Sophie; Opoka, Robert O.; John, Chandy C.; Liles, W. Conrad; Miller, Christopher; Kain, Kevin C.; Department of Pediatrics, School of MedicineBACKGROUND: Exposure of red blood cells to oxidants increases production of methemoglobin (MHb) resulting in impaired oxygen delivery to tissues. There are no reliable estimates of methemoglobinemia in low resource clinical settings. Our objectives were to: i) evaluate risk factors for methemoglobinemia in Ugandan children hospitalized with fever (study 1); and ii) investigate MHb responses in critically ill Ugandan children with severe malaria treated with inhaled nitric oxide (iNO), an oxidant that induces MHb in a dose-dependent manner (study 2). METHODS: Two prospective studies were conducted at Jinja Regional Referral Hospital in Uganda between 2011 and 2013. Study 1, a prospective cohort study of children admitted to hospital with fever (fever cohort, n = 2089 children 2 months to 5 years). Study 2, a randomized double-blind placebo-controlled parallel arm trial of room air placebo vs. 80 ppm iNO as an adjunctive therapy for children with severe malaria (RCT, n = 180 children 1-10 years receiving intravenous artesunate and 72 h of study gas). The primary outcomes were: i) masimo pulse co-oximetry elevated MHb levels at admission (>2 %, fever cohort); ii) four hourly MHb levels in the RCT. RESULTS: In the fever cohort, 34 % of children admitted with fever had elevated MHb at admission. Children with a history of vomiting, delayed capillary refill, elevated lactate, severe anemia, malaria, or hemoglobinopathies had increased odds of methemoglobinemia (p < 0.05 in a multivariate model). MHb levels at admission were higher in children who died (n = 89) compared to those who survived (n = 1964), p = 0.008. Among children enrolled in the iNO RCT, MHb levels typically plateaued within 12-24 h of starting study gas. MHb levels were higher in children receiving iNO compared to placebo, and MHb > 10 % occurred in 5.7 % of children receiving iNO. There were no differences in rates of study gas discontinuation between trial arms. CONCLUSIONS: Hospitalized children with evidence of impaired oxygen delivery, metabolic acidosis, anemia, or malaria were at risk of methemoglobinemia. However, we demonstrated high-dose iNO could be safely administered to critically ill children with severe malaria with appropriate MHb monitoring. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01255215 (Date registered: December 5, 2010).