- Browse by Subject
Browsing by Subject "Infralimbic"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Habitual Behavior Is Mediated by a Shift in Response-Outcome Encoding by Infralimbic Cortex(Society for Neuroscience, 2018-01-03) Barker, Jacqueline M.; Glen, W. Bailey; Linsenbardt, David N.; Lapish, Christopher C.; Chandler, L. Judson; Psychology, School of ScienceThe ability to flexibly switch between goal-directed actions and habits is critical for adaptive behavior. The infralimbic prefrontal cortex (IfL-C) has been consistently identified as a crucial structure for the regulation of response strategies. To investigate the role of the IfL-C, the present study employed two validated reinforcement schedules that either promote habits or goal-directed actions in mice. The results reveal that information about action-outcome relationships is differentially encoded in the IfL-C during actions and habits as evidenced by encoding of behavioral outcomes during goal-directed actions that is lost during habits. Optogenetic inhibition of the IfL-C selectively at press during habitual behavior (when firing rates are reduced during unreinforced goal-directed actions) resulted in restoration of sensitivity to change of action-outcome contingency. These results reveal a novel functional mechanism by which IfL-C promotes habitual behavior, and provide insight into strategies for the treatment and prevention of pathological, inflexible behavior common in neuropsychiatric illness.Item The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands(Elsevier, 2022) Howland, John G.; Ito, Rutsuko; Lapish, Christopher C.; Villaruel, Franz R.; Psychology, School of ScienceEmerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.