- Browse by Subject
Browsing by Subject "Information Integration"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ACLRO: An Ontology for the Best Practice in ACLR Rehabilitation(2020-10) Phalakornkule, Kanitha; Jones, Josette F.; Boukai, Ben; Liu, Xiaowen; Purkayatha, Saptarshi; Duncan, William D.With the rise of big data and the demands for leveraging artificial intelligence (AI), healthcare requires more knowledge sharing that offers machine-readable semantic formalization. Even though some applications allow shared data interoperability, they still lack formal machine-readable semantics in ICD9/10 and LOINC. With ontology, the further ability to represent the shared conceptualizations is possible, similar to SNOMED-CT. Nevertheless, SNOMED-CT mainly focuses on electronic health record (EHR) documenting and evidence-based practice. Moreover, due to its independence on data quality, the ontology enhances advanced AI technologies, such as machine learning (ML), by providing a reusable knowledge framework. Developing a machine-readable and sharable semantic knowledge model incorporating external evidence and individual practice’s values will create a new revolution for best practice medicine. The purpose of this research is to implement a sharable ontology for the best practice in healthcare, with anterior cruciate ligament reconstruction (ACLR) as a case study. The ontology represents knowledge derived from both evidence-based practice (EBP) and practice-based evidence (PBE). First, the study presents how the domain-specific knowledge model is built using a combination of Toronto Virtual Enterprise (TOVE) and a bottom-up approach. Then, I propose a top-down approach using Open Biological and Biomedical Ontology (OBO) Foundry ontologies that adheres to the Basic Formal Ontology (BFO)’s framework. In this step, the EBP, PBE, and statistic ontologies are developed independently. Next, the study integrates these individual ontologies into the final ACLR Ontology (ACLRO) as a more meaningful model that endorses the reusability and the ease of the model-expansion process since the classes can grow independently from one another. Finally, the study employs a use case and DL queries for model validation. The study's innovation is to present the ontology implementation for best-practice medicine and demonstrate how it can be applied to a real-world setup with semantic information. The ACLRO simultaneously emphasizes knowledge representation in health-intervention, statistics, research design, and external research evidence, while constructing the classes of data-driven and patient-focus processes that allow knowledge sharing explicit of technology. Additionally, the model synthesizes multiple related ontologies, which leads to the successful application of best-practice medicine.Item Consolidation of CDA-based documents from multiple sources : a modular approach(2016-09) Hosseini Asanjan, Seyed Masoud; Jones, Josette F.; Dixon, Brian E.; Vreeman, Daniel J.; Faiola, Anthony; Wu, HuanmeiPhysicians receive multiple CCDs for a single patient encompassing various encounters and medical history recorded in different information systems. It is cumbersome for providers to explore different pages of CCDs to find specific data which can be duplicated or even conflicted. This study describes the steps towards a system that integrates multiple CCDs into one consolidated document for viewing or processing patient-level data. Also, the impact of the system on healthcare providers’ perceived workload is evaluated. A modular system is developed to consolidate and de-duplicate CDA-based documents. The system is engineered to be scalable, extensible and open source. The system’s performance and output has evaluated first based on synthesized data and later based on real-world CCDs obtained from INPC database. The accuracy of the consolidation system along with the gaps in identification of the duplications were assessed. Finally, the impact of the system on healthcare providers’ workload is evaluated using NASA TLX tool. All of the synthesized CCDs were successfully consolidated, and no data were lost. The de-duplication accuracy was 100% based on synthesized data and the processing time for each document was 1.12 seconds. For real-world CCDs, our system de-duplicated 99.1% of the problems, 87.0% of allergies, and 91.7% of medications. Although the accuracy of the system is still very promising, however, there is a minor inaccuracy. Due to system improvements, the processing time for each document is reduced to average 0.38 seconds for each CCD. The result of NASA TLX evaluation shows that the system significantly decreases healthcare providers’ perceived workload. Also, it is observed that information reconciliation reduces the medical errors. The time for review of medical documents review time is significantly reduced after CCD consolidation. Given increasing adoption and use of Health Information Exchange (HIE) to share data and information across the care continuum, duplication of information is inevitable. A novel system designed to support automated consolidation and de-duplication of information across clinical documents as they are exchanged shows promise. Future work is needed to expand the capabilities of the system and further test it using heterogeneous vocabularies across multiple HIE scenarios.