ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Inborn metabolic disorders"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    dbRUSP: An Interactive Database to Investigate Inborn Metabolic Differences for Improved Genetic Disease Screening
    (MDPI, 2022-08-29) Peng, Gang; Zhang, Yunxuan; Zhao, Hongyu; Scharfe, Curt; Medical and Molecular Genetics, School of Medicine
    The Recommended Uniform Screening Panel (RUSP) contains more than forty metabolic disorders recommended for inclusion in universal newborn screening (NBS). Tandem-mass-spectrometry-based screening of metabolic analytes in dried blood spot samples identifies most affected newborns, along with a number of false positive results. Due to their influence on blood metabolite levels, continuous and categorical covariates such as gestational age, birth weight, age at blood collection, sex, parent-reported ethnicity, and parenteral nutrition status have been shown to reduce the accuracy of screening. Here, we developed a database and web-based tools (dbRUSP) for the analysis of 41 NBS metabolites and six variables for a cohort of 500,539 screen-negative newborns reported by the California NBS program. The interactive database, built using the R shiny package, contains separate modules to study the influence of single variables and joint effects of multiple variables on metabolite levels. Users can input an individual's variables to obtain metabolite level reference ranges and utilize dbRUSP to select new candidate markers for the detection of metabolic conditions. The open-source format facilitates the development of data mining algorithms that incorporate the influence of covariates on metabolism to increase accuracy in genetic disease screening.
  • Loading...
    Thumbnail Image
    Item
    Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances
    (Elsevier, 2022) Peng, Gang; Pakstis, Andrew J.; Gandotra, Neeru; Cowan, Tina M.; Zhao, Hongyu; Kidd, Kenneth K.; Scharfe, Curt; Medical and Molecular Genetics, School of Medicine
    DNA polymorphic markers and self-defined ethnicity groupings are used to group individuals with shared ancient geographic ancestry. Here we studied whether ancestral relationships between individuals could be identified from metabolic screening data reported by the California newborn screening (NBS) program. NBS data includes 41 blood metabolites measured by tandem mass spectrometry from singleton babies in 17 parent-reported ethnicity groupings. Ethnicity-associated differences identified for 71% of NBS metabolites (29 of 41, Cohen's d > 0.5) showed larger differences in blood levels of acylcarnitines than of amino acids (P < 1e-4). A metabolic distance measure, developed to compare ethnic groupings based on metabolic differences, showed low positive correlation with genetic and ancient geographic distances between the groups' ancestral world populations. Several outlier group pairs were identified with larger genetic and smaller metabolic distances (Black versus White) or with smaller genetic and larger metabolic distances (Chinese versus Japanese) indicating the influence of genetic and of environmental factors on metabolism. Using machine learning, comparison of metabolic profiles between all pairs of ethnic groupings distinguished individuals with larger genetic distance (Black versus Chinese, AUC = 0.96), while genetically more similar individuals could not be separated metabolically (Hispanic versus Native American, AUC = 0.51). Additionally, we identified metabolites informative for inferring metabolic ancestry in individuals from genetically similar populations, which included biomarkers for inborn metabolic disorders (C10:1, C12:1, C3, C5OH, Leucine-Isoleucine). This work sheds new light on metabolic differences in healthy newborns in diverse populations, which could have implications for improving genetic disease screening.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University