ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "In-baggage object identification"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Environment-independent In-baggage Object Identification Using WiFi Signals
    (IEEE Xplore, 2021-10) Shi, Cong; Zhao, Tianming; Xie, Yucheng; Zhang, Tianfang; Wang, Yan; Guo, Xiaonan; Chen, Yingying; Engineering Technology, School of Engineering and Technology
    Low-cost in-baggage object identification is highly demanded in enhancing public safety and smart manufacturing. Existing approaches usually require specialized equipment and heavy deployment overhead, making them hard to scale for wide deployment. The recent WiFi-based approach is unsuitable for practical deployment as it did not address dynamic environmental impacts. In this work, we propose an environment-independent in-baggage object identification system by leveraging low-cost WiFi. We exploit the channel state information (CSI) to capture material and shape characteristics to facilitate fine-grained inbaggage object identification. A major challenge of building such a system is that CSI measurements are sensitive to real-world dynamics, such as different types of baggage, time-varying ambient noises and interferences, and different deployment environments. To tackle these problems, we develop WiFi features based on polarized directional antennas that can capture objects’ material and shape characteristics. A convolutional neural network-based model is developed to constructively integrate the WiFi features and perform accurate in-baggage object identification. We also develop a material-based domain adaptation using adversarial learning to facilitate fast deployments in different environments. We conduct extensive experiments involving 14 representation objects, 4 types of bags in 3 different room environments. The results show that our system can achieve over 97% in the same environment, and our domain adaptation method can improve the object identification accuracy by 42% when the system is deployed in a new environment with little training.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University