ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Implantation depth"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The degree of permanent pacemaker dependence and clinical outcomes following transcatheter aortic valve implantation: implications for procedural technique
    (Oxford University Press, 2023-12-04) Dykun, Iryna; Mahabadi, Amir Abbas; Jehn, Stefanie; Kalra, Ankur; Isogai, Toshiaki; Wazni, Oussama M.; Kanj, Mohamad; Krishnaswamy, Amar; Reed, Grant W.; Yun, James J.; Totzeck, Matthias; Jánosi, R. Alexander; Lind, Alexander Y.; Kapadia, Samir R.; Rassaf, Tienush; Puri, Rishi; Medicine, School of Medicine
    Aims: Conduction abnormalities necessitating permanent pacemaker (PPM) implantation remain the most frequent complication post-transcatheter aortic valve implantation (TAVI), yet reliance on PPM function varies. We evaluated the association of right-ventricular (RV)-stimulation rate post-TAVI with 1-year major adverse cardiovascular events (MACE) (all-cause mortality and heart failure hospitalization). Methods and results: This retrospective cohort study of patients undergoing TAVI in two high-volume centers included patients with existing PPM pre-TAVI or new PPM post-TAVI. There was a bimodal distribution of RV-stimulation rates stratifying patients into two groups of either low [≤10%: 1.0 (0.0, 3.6)] or high [>10%: 96.0 (54.0, 99.9)] RV-stimulation rate post-TAVI. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated comparing MACE in patients with high vs. low RV-stimulation rates post-TAVI. Of 4659 patients, 408 patients (8.6%) had an existing PPM pre-TAVI and 361 patients (7.7%) underwent PPM implantation post-TAVI. Mean age was 82.3 ± 8.1 years, 39% were women. A high RV-stimulation rate (>10%) development post-TAVI is associated with a two-fold increased risk for MACE [1.97 (1.20, 3.25), P = 0.008]. Valve implantation depth was an independent predictor of high RV-stimulation rate [odds ratio (95% CI): 1.58 (1.21, 2.06), P=<0.001] and itself associated with MACE [1.27 (1.00, 1.59), P = 0.047]. Conclusion: Greater RV-stimulation rates post-TAVI correlate with increased 1-year MACE in patients with new PPM post-TAVI or in those with existing PPM but low RV-stimulation rates pre-TAVI. A shallower valve implantation depth reduces the risk of greater RV-stimulation rates post-TAVI, correlating with improved patient outcomes. These data highlight the importance of a meticulous implant technique even in TAVI recipients with pre-existing PPMs.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University