- Browse by Subject
Browsing by Subject "Immunotherapy"
Now showing 1 - 10 of 97
Results Per Page
Sort Options
Item A Bayesian phase I/II biomarker-based design for identifying subgroup-specific optimal dose for immunotherapy(Sage, 2022) Guo, Beibei; Zang, Yong; Biostatistics and Health Data Science, School of MedicineImmunotherapy is an innovative treatment that enlists the patient’s immune system to battle tumors. The optimal dose for treating patients with an immunotherapeutic agent may differ according to their biomarker status. In this article, we propose a biomarker-based phase I/II dose-finding design for identifying subgroup-specific optimal dose for immunotherapy (BSOI) that jointly models the immune response, toxicity, and efficacy outcomes. We propose parsimonious yet flexible models to borrow information across different types of outcomes and subgroups. We quantify the desirability of the dose using a utility function and adopt a two-stage dose-finding algorithm to find the optimal dose for each subgroup. Simulation studies show that the BSOI design has desirable operating characteristics in selecting the subgroup-specific optimal doses and allocating patients to those optimal doses, and outperforms conventional designs.Item A Bayesian Phase I/II Design to Determine Subgroup-Specific Optimal Dose for Immunotherapy Sequentially Combined with Radiotherapy(Wiley, 2023) Guo, Beibei; Zang, Yong; Lin, Li-Hsiang; Zhang, Rui; Biostatistics and Health Data Science, School of MedicineSequential administration of immunotherapy following radiotherapy (immunoRT) has attracted much attention in cancer research. Due to its unique feature that radiotherapy upregulates the expression of a predictive biomarker for immunotherapy, novel clinical trial designs are needed for immunoRT to identify patient subgroups and the optimal dose for each subgroup. In this article, we propose a Bayesian phase I/II design for immunotherapy administered after standard-dose radiotherapy for this purpose. We construct a latent subgroup membership variable and model it as a function of the baseline and pre-post radiotherapy change in the predictive biomarker measurements. Conditional on the latent subgroup membership of each patient, we jointly model the continuous immune response and the binary efficacy outcome using plateau models, and model toxicity using the equivalent toxicity score approach to account for toxicity grades. During the trial, based on accumulating data, we continuously update model estimates and adaptively randomize patients to admissible doses. Simulation studies and an illustrative trial application show that our design has good operating characteristics in terms of identifying both patient subgroups and the optimal dose for each subgroup.Item A clinical nomogram for predicting tumor regression grade in esophageal squamous-cell carcinoma treated with immune neoadjuvant immunotherapy(AME Publishing Company, 2022) Yu, Yongkui; Wang, Wei; Qin, Zimin; Li, Haomiao; Liu, Qi; Ma, Haibo; Sun, Haibo; Bauer, Thomas L.; Pimiento, Jose M.; Gabriel, Emmanuel; Birdas, Thomas; Li, Yin; Xing, Wenqun; Surgery, School of MedicineBackground: There are various treatment options for esophageal squamous cell cancer. including surgery, peri-operative chemotherapy, and radiation. More recently, neoadjuvant immunotherapy has also been shown improve outcomes. In this study, we addressed the question, "Can we predict which patients with esophageal squamous cell cancer will benefit from neoadjuvant immunotherapy?". Methods: All patients with thoracic esophageal squamous-cell carcinoma (T2N+M0-T3-4N0/+M0) (according to the eighth edition of the National Comprehensive Cancer Network guidelines) who underwent immune neoadjuvant immunochemotherapy with programmed cell death protein 1 (PD-1) combined with paclitaxel plus cisplatin or nedaplatin in the Affiliated Cancer Hospital of Zhengzhou University, China, between November 2019 and August 2021 were included in this study. All patients underwent surgical resection. We developed a response [tumor regression grade (TRG)] prediction model using the least absolute shrinkage and selection operator (LASSO) regression incorporating factors associated with response. The accuracy of the prediction model was then validated. Results: We included 79 patients who underwent neoadjuvant immunotherapy combined with chemotherapy, aged 48-78 years (62.05±6.67), including 21 males and 58 females. There were five cases of immune-related pneumonia, of which three cases were diagnosed as immune-related pneumonia during the perioperative period, and one case of immune-related thyroid dysfunction changes. After LASSO regression, the factors that were independently associated with TRG were clinical T stage before neoadjuvant therapy, clinical N stage before neoadjuvant therapy, albumin level difference from before to after neoadjuvant therapy, white blood cell (WBC) count before neoadjuvant therapy, and T stage before surgery. We constructed a prediction model, plotted the nomogram, and verified its accuracy. Its Brier score was 0.13, its calibration slope was 0.98, and its C-index was 0.90 (95% CI: 0.82-0.97). Conclusions: Our prediction model can predict the likelihood of TRG in patients with esophageal squamous cell cancer after immunotherapy combined with neoadjuvant chemotherapy. Using this prediction model, we plan to conduct a subsequent neoadjuvant radiotherapy in patients with of TRG 2-3 patients with neoadjuvant radiotherapy.Item A Multi-Center, Single Arm, Phase Ib study of Pembrolizumab (MK-3475) in Combination with Chemotherapy for Patients with Advanced Colorectal Cancer: HCRN GI14-186(Springer, 2021) Herting, Cameron J.; Farren, Matthew R.; Tong, Yan; Liu, Ziyue; O’Neil, Bert; Bekaii-Saab, Tanios; Noonan, Anne; McQuinn, Christopher; Mace, Thomas A.; Shaib, Walid; Wu, Christina; El-Rayes, Bassel F.; Shahda, Safi; Lesinski, Gregory B.; Biostatistics and Health Data Science, School of MedicineModified FOLFOX6 is an established therapy for patients with metastatic colorectal cancer (mCRC). We conducted a single-arm phase Ib study to address the hypothesis that addition of pembrolizumab to this regimen could safely and effectively improve patient outcomes (NCT02375672). The relationship between immune biomarkers and clinical response were assessed in an exploratory manner. Patients with mCRC received concurrent pembrolizumab and modified FOLFOX6. The study included safety run-in for the first six patients. The primary objective was median progression-free survival (mPFS), with secondary objectives including median overall survival, safety, and exploratory assessment of immune changes. To assess immunological impact, peripheral blood was collected at baseline and during treatment. The levels of soluble factors were measured via bioplex, while a panel of checkpoint molecules and phenotypically defined cell populations were assessed with flow cytometry and correlated with RECIST and mPFS. Due to incidences of grade 3 and grade 4 neutropenia in the safety lead-in, the dose of mFOLFOX6 was reduced in the expansion cohort. Median PFS was 8.8 months and median OS was not reached at data cutoff. Best responses of stable disease, partial response, and complete response were observed in 43.3%, 50.0%, and 6.7% of patients, respectively. Several soluble and cellular immune biomarkers were associated with improved RECIST and mPFS. Immunosuppressive myeloid and T cell subsets that were analyzed were not associated with response. Primary endpoint was not superior to historic control. Biomarkers that were associated with improved response may be informative for future regimens combining chemotherapy with immune checkpoint inhibitors.Item A Phase II Trial of Adjuvant Durvalumab Following Trimodality Therapy for Locally Advanced Esophageal and Gastroesophageal Junction Adenocarcinoma: A Big Ten Cancer Research Consortium Study(Frontiers Media, 2021-09-17) Mamdani, Hirva; Schneider, Bryan; Perkins, Susan M.; Burney, Heather N.; Kasi, Pashtoon Murtaza; Abushahin, Laith I.; Birdas, Thomas; Kesler, Kenneth; Watkins, Tracy M.; Badve, Sunil S.; Radovich, Milan; Jalal, Shadia I.; Surgery, School of MedicineBackground: Most patients with resectable locally advanced esophageal and gastroesophageal junction (GEJ) adenocarcinoma (AC) receive concurrent chemoradiation (CRT) followed by esophagectomy. The majority of patients do not achieve pathologic complete response (pCR) with neoadjuvant CRT, and the relapse rate is high among these patients. Methods: We conducted a phase II study (ClinicalTrials.gov Identifier: NCT02639065) evaluating the efficacy and safety of PD-L1 inhibitor durvalumab in patients with locally advanced esophageal and GEJ AC who have undergone neoadjuvant CRT followed by R0 resection with evidence of persistent residual disease in the surgical specimen. Patients received durvalumab 1500 mg IV every 4 weeks for up to 1 year. The primary endpoint was 1-year relapse free survival (RFS). Secondary endpoint was safety and tolerability of durvalumab following trimodality therapy. Exploratory endpoints included correlation of RFS with PD-L1 expression, HER-2 expression, and tumor immune cell population. Results: Thirty-seven patients were enrolled. The majority (64.9%) had pathologically positive lymph nodes. The most common treatment related adverse events were fatigue (27%), diarrhea (18.9%), arthralgia (16.2%), nausea (16.2%), pruritus (16.2%), cough (10.8%), and increase in AST/ALT/bilirubin (10.8%). Three (8.1%) patients developed grade 3 immune mediated adverse events. One-year RFS was 73% (95% CI, 56-84%) with median RFS of 21 months (95% CI, 14-40.4 months). Patients with GEJ AC had a trend toward superior 1-year RFS compared to those with esophageal AC (83% vs. 63%, p = 0.1534). There was a numerical trend toward superior 1-year RFS among patients with PD-L1 positive disease compared to those with PD-L1 negative disease, using CPS of ≥10 (100% vs. 66.7%, p = 0.1551) and ≥1 (84.2% vs. 61.1%, p = 0.1510) cutoffs. A higher relative proportion of M2 macrophages and CD4 memory activated T cells was associated with improved RFS (HR = 0.16; 95% CI, 0.05-0.59; p = 0.0053; and HR = 0.37; 95% CI, 0.15-0.93, p = 0.0351, respectively). Conclusions: Adjuvant durvalumab in patients with residual disease in the surgical specimen following trimodality therapy for locally advanced esophageal and GEJ AC led to clinically meaningful improvement in 1-year RFS compared to historical control rate. Higher PD-L1 expression may have a correlation with the efficacy of durvalumab in this setting. Higher proportion of M2 macrophages and CD4 memory activated T cells was associated with superior RFS.Item A T Cell‐Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy(Wiley, 2023) Zhou, Zhuolong; Van der Jeught, Kevin; Li, Yujing; Sharma, Samantha; Yu, Tao; Moulana, Ishara; Liu, Sheng; Wan, Jun; Territo, Paul R.; Opyrchal, Mateusz; Zhang, Xinna; Wan, Guohui; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicinePancreatic ductal adenocarcinoma (PDA) is a clinically challenging disease with limited treatment options. Despite a small percentage of cases with defective mismatch DNA repair (dMMR), PDA is included in the most immune‐resistant cancer types that are poorly responsive to immune checkpoint blockade (ICB) therapy. To facilitate drug discovery combating this immunosuppressive tumor type, a high‐throughput drug screen platform is established with the newly developed T cell‐incorporated pancreatic tumor organoid model. Tumor‐specific T cells are included in the pancreatic tumor organoids by two‐step cell packaging, fully recapitulating immune infiltration in the immunosuppressive tumor microenvironment (TME). The organoids are generated with key components in the original tumor, including epithelial, vascular endothelial, fibroblast and macrophage cells, and then packaged with T cells into their outside layer mimicking a physical barrier and enabling T cell infiltration and cytotoxicity studies. In the PDA organoid‐based screen, epigenetic inhibitors ITF2357 and I‐BET151 are identified, which in combination with anti‐PD‐1 based therapy show considerably greater anti‐tumor effect. The combinatorial treatment turns the TME from immunosuppressive to immunoactive, up‐regulates the MHC‐I antigen processing and presentation, and enhances the effector T cell activity. The standardized PDA organoid model has shown great promise to accelerate drug discovery for the immunosuppressive cancer.Item A target discovery pipeline identified ILT3 as a target for immunotherapy of multiple myeloma(Elsevier, 2023) Di Meo, Francesco; Iyer, Anjushree; Akama, Keith; Cheng, Rujin; Yu, Christina; Cesarano, Annamaria; Kurihara, Noriyoshi; Tenshin, Hirofumi; Aljoufi, Arafat; Marino, Silvia; Soni, Rajesh K.; Roda, Julie; Sissons, James; Vu, Ly P.; Guzman, Monica; Huang, Kun; Laskowski, Tamara; Broxmeyer, Hal E.; Roodman, David G.; Perna, Fabiana; Medicine, School of MedicineMultiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins. We annotate candidate protein expression in many healthy tissues and validate the expression of promising targets in 30+ patient samples with relapsed/refractory MM, as well as in primary healthy hematopoietic stem cells and T cells by flow cytometry. Six candidates (ILT3, SEMA4A, CCR1, LRRC8D, FCRL3, IL12RB1) and B cell maturation antigen (BCMA) present the most favorable profile in malignant and healthy cells. We develop a bispecific T cell engager targeting ILT3 that shows potent killing effects in vitro and decreased tumor burden and prolonged mice survival in vivo, suggesting therapeutic relevance. Our study uncovers MM-associated antigens that hold great promise for immune-based therapies of MM.Item Adaptive phase I-II clinical trial designs identifying optimal biological doses for targeted agents and immunotherapies(Sage, 2024) Zang, Yong; Guo, Beibei; Qiu, Yingjie; Liu, Hao; Opyrchal, Mateusz; Lu, Xiongbin; Biostatistics and Health Data Science, School of MedicineTargeted agents and immunotherapies have revolutionized cancer treatment, offering promising options for various cancer types. Unlike traditional therapies the principle of "more is better" is not always applicable to these new therapies due to their unique biomedical mechanisms. As a result, various phase I-II clinical trial designs have been proposed to identify the optimal biological dose that maximizes the therapeutic effect of targeted therapies and immunotherapies by jointly monitoring both efficacy and toxicity outcomes. This review article examines several innovative phase I-II clinical trial designs that utilize accumulated efficacy and toxicity outcomes to adaptively determine doses for subsequent patients and identify the optimal biological dose, maximizing the overall therapeutic effect. Specifically, we highlight three categories of phase I-II designs: efficacy-driven, utility-based, and designs incorporating multiple efficacy endpoints. For each design, we review the dose-outcome model, the definition of the optimal biological dose, the dose-finding algorithm, and the software for trial implementation. To illustrate the concepts, we also present two real phase I-II trial examples utilizing the EffTox and ISO designs. Finally, we provide a classification tree to summarize the designs discussed in this article.Item Advancements in Immunotherapeutic Treatments for Hepatocellular Carcinoma: Potential of Combination Therapies(MDPI, 2024-06-21) Zarlashat, Yusra; Mushtaq, Hassan; Pham, Linh; Abbas, Wasim; Sato, Keisaku; Medicine, School of MedicineHepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a significant global health burden, with increasing incidence rates and limited treatment options. Immunotherapy has become a promising approach due to its ability to affect the immune microenvironment and promote antitumor responses. The immune microenvironment performs an essential role in both the progression and the development of HCC, with different characteristics based on specific immune cells and etiological factors. Immune checkpoint inhibitors, including programmed death-1/programmed death-ligand 1 inhibitors (pembrolizumab, nivolumab, and durvalumab) and cytotoxic T lymphocyte antigen-4 inhibitors (tremelimumab and ipilimumab), have the potential to treat advanced HCC and overcome adverse effects, such as liver failure and chemoresistance. Phase II and phase III clinical trials highlight the efficacy of pembrolizumab and nivolumab, respectively, in advanced HCC patients, as demonstrated by their positive effects on overall survival and progression-free survival. Tremelimumab has exhibited modest response rates, though it does possess antiviral activity. Thus, it is still being investigated in ongoing clinical trials. Combination therapies with multiple drugs have demonstrated potential benefits in terms of survival and tumor response rates, improving patient outcomes compared to monotherapy, especially for advanced-stage HCC. This review addresses the clinical trials of immunotherapies for early-, intermediate-, and advanced-stage HCC. Additionally, it highlights how combination therapy can significantly enhance overall survival, progression-free survival, and objective response rate in advanced-stage HCC, where treatment options are limited.Item Aging- and Tumor-Mediated Increase in CD8+CD28- T Cells Might Impose a Strong Barrier to Success of Immunotherapy in Glioblastoma(American Association of Immunologists, 2021-06-08) Huff, Wei X.; Bam, Marpe; Shireman, Jack M.; Kwon, Jae Hyun; Song, Leo; Newman, Sharlé; Cohen-Gadol, Aaron A.; Shapiro, Scott; Jones, Tamara; Fulton, Kelsey; Liu, Sheng; Tanaka, Hiromi; Liu, Yunlong; Wan, Jun; Dey, Mahua; Neurological Surgery, School of MedicineClinical use of various forms of immunotherapeutic drugs in glioblastoma (GBM), has highlighted severe T-cell dysfunction such as exhaustion in GBM patients. However, reversing T-cell exhaustion using immune checkpoint inhibitors in GBM clinical trials has not shown significant overall survival benefit. Phenotypically, CD8+ T cells with downregulated CD28 co-receptors, low CD27 expression, increased CD57 expression, and telomere shortening, are classified as senescent T cells. These senescent T cells are normally seen as part of aging and also in many forms of solid cancers. Absence of CD28 on T-cells leads to several functional irregularities including reduced TCR diversity, incomplete activation of T cells, and defects in antigen induced proliferation. In the context of GBM, presence and/or function of these CD8+CD28− T-cells is unknown. In this clinical correlative study, we investigated the effect of aging as well as tumor microenvironment on CD8+ T-cell phenotype as an indicator of its function in GBM patients. We systematically analyzed and describe a large population of CD8+CD28− T-cells in both the blood and tumor infiltrating lymphocytes of GBM patients. We found that phenotypically these CD8+CD28− T-cells represent a distinct population compared to exhausted T-cells. Comparative transcriptomic and pathway analysis of CD8+CD28− T cell populations in GBM patients revealed that tumor microenvironment might be influencing several immune related pathways and thus further exaggerating the age associated immune dysfunction in this patient population.