- Browse by Subject
Browsing by Subject "Immunoglobulins"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Item Follicular regulatory T cells inhibit the development of granzyme B-expressing follicular helper T cells(American Society for Clinical Investigation, 2019-08-22) Xie, Markus M.; Fang, Shuyi; Chen, Qiang; Liu, Hong; Wan, Jun; Dent, Alexander L.; Microbiology and Immunology, School of MedicineT follicular regulatory (TFR) cells are found in the germinal center (GC) response and help shape the antibody (Ab) response. However, the precise role of TFR cells in the GC is controversial. Here, we addressed TFR cell function using mice with impaired TFR cell development (Bcl6-flox/Foxp3-cre, or Bcl6FC mice), mice with augmented TFR cell development (Blimp1-flox/Foxp3-cre, or Blimp1FC mice), and two different methods of immunization. Unexpectedly, GC B cell levels positively correlated with TFR cell levels. Using a gene profiling approach, we found that TFH cells from TFR-deficient mice showed strong upregulation of granzyme B (Gzmb) and other effector CD8+ T cell genes, many of which were Stat4 dependent. The upregulation of cytotoxic genes was the highest in TFH cells from TFR-deficient mice where Blimp1 was also deleted in Foxp3+ regulatory T cells (Bcl6-flox/Prdm1-flox/Foxp3-cre [DKO] mice). Granzyme B- and Eomesodermin-expressing TFH cells correlated with a higher rate of apoptotic GC B cells. Klrg1+ TFH cells from DKO mice expressed higher levels of Gzmb. Our data show that TFR cells repress the development of abnormal cytotoxic TFH cells, and the presence of cytotoxic TFH cells correlates with a lower GC and Ab response. Our data show what we believe is a novel mechanism of action for TFR cells helping the GC response.Item Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection(American Society for Clinical Investigation, 2020-05-19) Obeng-Adjei, Nyamekye; Larremore, Daniel B.; Turner, Louise; Ongoiba, Aissata; Li, Shanping; Doumbo, Safiatou; Yazew, Takele B.; Kayentao, Kassoum; Miller, Louis H.; Traore, Boubacar; Pierce, Susan K.; Buckee, Caroline O.; Lavstsen, Thomas; Crompton, Peter D.; Tran, Tuan M.; Medicine, School of MedicineBACKGROUND Malaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum–infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria. METHODS We evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission. RESULTS Using longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes. CONCLUSION This study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant–specific antibodies. TRIAL REGISTRATION ClinicalTrials.gov NCT01322581.Item Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement(Ferrata-Storti Foundation, 2023-03-01) Bomken, Simon; Enshaei, Amir; Schwalbe, Edward C.; Mikulasova, Aneta; Dai, Yunfeng; Zaka, Masood; Fung, Kent T. M.; Bashton, Matthew; Lim, Huezin; Jones, Lisa; Karataraki, Nefeli; Winterman, Emily; Ashby, Cody; Attarbaschi, Andishe; Bertrand, Yves; Bradtke, Jutta; Buldini, Barbara; Burke, G. A. Amos; Cazzaniga, Giovanni; Gohring, Gudrun; De Groot-Kruseman, Hesta A.; Haferlach, Claudia; Lo Nigro, Luca; Parihar, Mayur; Plesa, Adriana; Seaford, Emma; Sonneveld, Edwin; Strehl, Sabine; Van der Velden, Vincent H. J.; Rand, Vikki; Hunger, Stephen P.; Harrison, Christine J.; Bacon, Chris M.; Van Delft, Frederik W.; Loh, Mignon L.; Moppett, John; Vormoor, Josef; Walker, Brian A.; Moorman, Anthony V.; Russell, Lisa J.; Medicine, School of MedicineRarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.Item Purification of SIMPL Antibody and Immunofluorescence of SIMPL Sub-Cellular Localization in Response to TNFα- and IL-1(2011-03-10) Cogill, Steven B.; Harrington, Maureen A.; Goebl, Mark, 1958-; Sanghani, Sonal P.SIMPL is a transcriptional co-activator that alters the activity of transcription factor, NF-κB. In response to pathogens, cytokines such as Interleukin-1 (IL-1) and Tumor Necrosis Factor (TNF) signal through the IL-1 and TNF-α receptors, respectively, which are found on various cell types. Activation of these receptors can result in the nuclear localization of NF-κB where it enables the transcription of several different genes key in the innate immune response. Endogenous co-localization of the SIMPL protein with NF-κB in response to these same cytokine signals has yet to be demonstrated. Polyclonal antibody generated against a truncated version of the SIMPL protein was purified from the sera obtained from immunized rabbits using affinity chromatography. The antibody was found to have a high specificity for both the native and denatured form of the protein as demonstrated by the lack of nonspecific bands observed in immunoprecipitations and Western blotting. The antibody was utilized in immunofluorescence experiments on mouse endothelial cells that were either unstimulated or were stimulated (IL-1 or TNF-α). In the absence of cytokine, SIMPL was localized in both the cytoplasm and the nucleus as opposed to NF-κB which was almost exclusively localized in the cytoplasm. In the presence of IL-1, the concentration of SIMPL in the nucleus was increased, and in the presence of TNF-α, the concentration of SIMPL in the nucleus was even greater. Results of this study identified future routes for SIMPL antibody isolation as well as to demonstrate that endogenous SIMPL protein nuclear localization may not be solely dependent upon TNF-α signaling.Item Regulation of the germinal center reaction by T helper cells and T regulatory cells(2016-04-11) Wu, Hao; Dent, Alexander L.; Kaplan, Mark H.; Turner, Matthew J.; Zhou, BaohuaGerminal Centers (GCs) are transient lymphoid structures that arise in lymphoid organs in response to T cell-dependent antigen. Within the GC, follicular T helper (TFH) cells promote GC B cell differentiation and in turn the proper antibody production to protect us from invading pathogens. We wished to study the regulation of this process by transcription factors STAT3 and Bcl6. STAT3 is important for both TFH cell differentiation and IL-4 production by Th2 cells. IL-4 is a major functional cytokine produced by TFH cells. To dissect the role of STAT3 in IL-4 production by TFH cells, we generated T cell-specific conditional STAT3 knockout mice (STAT3KO). Compared to WT mice, TFH cell differentiation in STAT3KO mice was partially impaired, both in spleen following sheep red blood cells (SRBC) immunization and in Peyer's patches (PPs). In STAT3KO mice, the numbers of splenic GC B cells were markedly decreased, whereas PP GC B cells developed at normal numbers and IgG1 class switching was greatly increased. Unexpectedly, we found that STAT3 intrinsically suppressed the expression of IL-4 and Bcl6 in TFH cells. Mechanistically, in vitro repression of IL-4 expression in CD4 T cells by Bcl6 required STAT3 function. Apart from TFH cells, the GC reaction is also controlled by regulatory follicular T helper (TFR) cells, a subset of Treg cells. To study the mechanism of how TFR cells regulate the GC reaction, we generated mice specifically lacking TFR cells by specifically deleting Bcl6 in Treg cells. Following immunization, these "Bcl6FC" mice developed normal TFH and GC B cell populations. However, Bcl6FC mice produced altered antigen-specific antibody responses, with reduced titers of IgG and increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV-1 gp120 "prime-boost" vaccine model. Additionally, TFH cells from Bcl6FC mice produced higher levels of Interferon-γ, IL-10 and IL-21. Loss of TFR cells therefore leads to highly abnormal TFH and GC B cell responses. Overall, our studies have uncovered unexpected regulatory roles of STAT3 in TFH cell function as well as the novel regulatory roles of TFR cells on cytokine production by TFH cells and on antibody production.Item Segregation of Gm allotypes and immunoglobulin levels(1976) Barnhart, Donald WilliamItem T follicular regulatory cells in food allergy promote IgE via IL-4(American Society for Clinical Investigation, 2024-10-08) Chen, Qiang; Abdi, Abdullahi M.; Luo, Wei; Yuan, Xue; Dent, Alexander L.; Microbiology and Immunology, School of MedicineT follicular regulatory (TFR) cells are found in the germinal center (GC) response and, along with T follicular helper (TFH) cells, help to control the development of high-affinity antibodies (Ab). Although TFR cells are generally thought to repress GC B cells and the Ab response, we have previously shown that in a mouse food allergy model, TFR cells produce IL-10 and play an essential helper role such that in the absence of TFR cells, IgE responses are diminished. Here we show that in this food allergy response, TFR cells produced IL-4 that promotes the generation of antigen-specific IgE. We show that food allergy-primed TFR cells specifically upregulate IL-4 gene transcription and produce functional IL-4 that promoted IgE responses both in vitro and in vivo. We determined that IgE responses are dependent on a high level of IL-4 produced by follicular T cells in the GC, explaining the need for IL-4 produced by TFR cells in the food allergy response. Overall, our findings have demonstrated that in food allergy, TFR cells can produce IL-4 and regulate IgE in a manner that augments the role of TFH cells in IgE responses.