- Browse by Subject
Browsing by Subject "Immune response"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item 17-Beta estradiol-induced modulation of the immune system(1984) Myers, Michael JosephItem A Bayesian phase I/II biomarker-based design for identifying subgroup-specific optimal dose for immunotherapy(Sage, 2022) Guo, Beibei; Zang, Yong; Biostatistics and Health Data Science, School of MedicineImmunotherapy is an innovative treatment that enlists the patient’s immune system to battle tumors. The optimal dose for treating patients with an immunotherapeutic agent may differ according to their biomarker status. In this article, we propose a biomarker-based phase I/II dose-finding design for identifying subgroup-specific optimal dose for immunotherapy (BSOI) that jointly models the immune response, toxicity, and efficacy outcomes. We propose parsimonious yet flexible models to borrow information across different types of outcomes and subgroups. We quantify the desirability of the dose using a utility function and adopt a two-stage dose-finding algorithm to find the optimal dose for each subgroup. Simulation studies show that the BSOI design has desirable operating characteristics in selecting the subgroup-specific optimal doses and allocating patients to those optimal doses, and outperforms conventional designs.Item Adeno-Associated Virus D-Sequence-Mediated Suppression of Expression of a Human Major Histocompatibility Class II Gene: Implications in the Development of Adeno-Associated Virus Vectors for Modulating Humoral Immune Response(Mary Ann Liebert, Inc., 2020-05) Kwon, Hyung-Joo; Qing, Keyun; Ponnazhagan, Selvarangan; Wang, Xu-Shan; Markusic, David M.; Gupte, Siddhant; Boye, Shannon E.; Srivastava, Arun; Pediatrics, School of MedicineA 20-nt long sequence, termed the D-sequence, in the adeno-associated virus (AAV) inverted terminal repeat was observed to share a partial sequence homology with the X-box in the regulatory region of the human leukocyte antigen DRA (HLA-DRA) promoter of the human major histocompatibility complex class II (MHC-II) genes. The D-sequence was also shown to specifically interact with the regulatory factor binding to the X-box (RFX), binding of which to the X-box is a critical step in the MHC-II gene expression, suggesting that D-sequence might compete for RFX transcription factor binding, thereby suppressing expression from the MHC-II promoter. In DNA-mediated transfection experiments, using a reporter gene under the control of the HLA-DRA promoter, D-sequence oligonucleotides were found to inhibit expression of the reporter gene expression in HeLa and 293 cells by ∼93% and 96%, respectively. No inhibition was observed when nonspecific synthetic oligonucleotides were used. D-sequence oligonucleotides had no effect on expression from the cytomegalovirus immediate-early gene promoter. Interferon-γ-mediated activation of MHC-II gene expression was also inhibited by D-sequence oligonucleotides as well as after infection with either the wild-type AAV or transduction with recombinant AAV vectors. These studies suggest that the D-sequence-mediated downregulation of the MHC-II gene expression may be exploited toward the development of novel AAV vectors capable of dampening the host humoral response, which has important implication in the optimal use of these vectors in human gene therapy.Item BIPSE: A Biomarker-based Phase I/II Design for Immunotherapy Trials with Progression-free Survival Endpoint(Wiley, 2022) Guo, Beibei; Zang, Yong; Biostatistics and Health Data Science, School of MedicineA Bayesian biomarker-based phase I/II design (BIPSE) is presented for immunotherapy trials with a progression-free survival (PFS) endpoint. The objective is to identify the subgroup-specific optimal dose, defined as the dose with the best risk-benefit tradeoff in each biomarker subgroup. We jointly model the immune response, toxicity outcome, and PFS with information borrowing across subgroups. A plateau model is used to describe the marginal distribution of the immune response. Conditional on the immune response, we model toxicity using probit regression and model PFS using the mixture cure rate model. During the trial, based on the accumulating data, we continuously update model estimates and adaptively randomize patients to doses with high desirability within each subgroup. Simulation studies show that the BIPSE design has desirable operating characteristics in selecting the subgroup-specific optimal doses and allocating patients to those optimal doses, and outperforms conventional designs.Item Coagulation factor IX gene transfer to non-human primates using engineered AAV3 capsid and hepatic optimized expression cassette(Elsevier, 2021-08-26) Kumar, Sandeep R. P.; Xie, Jun; Hu, Shilang; Ko, Jihye; Huang, Qifeng; Brown, Harrison C.; Srivastava, Alok; Markusic, David M.; Doering, Christopher B.; Spencer, H. Trent; Srivastava, Arun; Gao, Guangping; Herzog, Roland W.; Pediatrics, School of MedicineHepatic gene transfer with adeno-associated viral (AAV) vectors shows much promise for the treatment of the X-linked bleeding disorder hemophilia B in multiple clinical trials. In an effort to further innovate this approach and to introduce alternative vector designs with potentially superior features into clinical development, we recently built a vector platform based on AAV serotype 3 because of its superior tropism for human hepatocytes. A vector genome with serotype-matched inverted terminal repeats expressing hyperactive human coagulation factor IX (FIX)-Padua was designed for clinical use that is optimized for translation using hepatocyte-specific codon-usage bias and is depleted of immune stimulatory CpG motifs. Here, this vector genome was packaged into AAV3 (T492V + S663V) capsid for hepatic gene transfer in non-human primates. FIX activity within or near the normal range was obtained at a low vector dose of 5 × 1011 vector genomes/kg. Pre-existing neutralizing antibodies, however, completely or partially blocked hepatic gene transfer at that dose. No CD8+ T cell response against capsid was observed. Antibodies against the human FIX transgene product formed at a 10-fold higher vector dose, albeit hepatic gene transfer was remarkably consistent, and sustained FIX activity in the normal range was nonetheless achieved in two of three animals for the 3-month duration of the study. These results support the use of this vector at low vector doses for gene therapy of hemophilia B in humans.Item Correlation Analysis of Histopathology and Proteogenomics Data for Breast Cancer(American Society for Biochemistry and Molecular Biology, 2019-08-09) Zhan, Xiaohui; Cheng, Jun; Huang, Zhi; Han, Zhi; Helm, Bryan; Liu, Xiaowen; Zhang, Jie; Wang, Tian-Fu; Ni, Dong; Huang, Kun; Medicine, School of MedicineTumors are heterogeneous tissues with different types of cells such as cancer cells, fibroblasts, and lymphocytes. Although the morphological features of tumors are critical for cancer diagnosis and prognosis, the underlying molecular events and genes for tumor morphology are far from being clear. With the advancement in computational pathology and accumulation of large amount of cancer samples with matched molecular and histopathology data, researchers can carry out integrative analysis to investigate this issue. In this study, we systematically examine the relationships between morphological features and various molecular data in breast cancers. Specifically, we identified 73 breast cancer patients from the TCGA and CPTAC projects matched whole slide images, RNA-seq, and proteomic data. By calculating 100 different morphological features and correlating them with the transcriptomic and proteomic data, we inferred four major biological processes associated with various interpretable morphological features. These processes include metabolism, cell cycle, immune response, and extracellular matrix development, which are all hallmarks of cancers and the associated morphological features are related to area, density, and shapes of epithelial cells, fibroblasts, and lymphocytes. In addition, protein specific biological processes were inferred solely from proteomic data, suggesting the importance of proteomic data in obtaining a holistic understanding of the molecular basis for tumor tissue morphology. Furthermore, survival analysis yielded specific morphological features related to patient prognosis, which have a strong association with important molecular events based on our analysis. Overall, our study demonstrated the power for integrating multiple types of biological data for cancer samples in generating new hypothesis as well as identifying potential biomarkers predicting patient outcome. Future work includes causal analysis to identify key regulators for cancer tissue development and validating the findings using more independent data sets.Item Efficacy of novel allogeneic cancer cells vaccine to treat colorectal cancer(Frontiers Media, 2024-07-24) Alzeeb, George; Tortorelli, Corinne; Taleb, Jaqueline; De Luca, Fanny; Berge, Benoit; Bardet, Chloé; Limagne, Emeric; Brun, Marion; Chalus, Lionel; Pinteur, Benoit; Bravetti, Paul; Gongora, Céline; Apetoh, Lionel; Ghiringhelli, Francois; Medicine, School of MedicineColorectal cancer (CRC) remains a significant global health burden, emphasizing the need for innovative treatment strategies. 95% of the CRC population are microsatellite stable (MSS), insensitive to classical immunotherapies such as anti-PD-1; on the other hand, responders can become resistant and relapse. Recently, the use of cancer vaccines enhanced the immune response against tumor cells. In this context, we developed a therapeutic vaccine based on Stimulated Tumor Cells (STC) platform technology. This vaccine is composed of selected tumor cell lines stressed and haptenated in vitro to generate a factory of immunogenic cancer-related antigens validated by a proteomic cross analysis with patient's biopsies. This technology allows a multi-specific education of the immune system to target tumor cells harboring resistant clones. Here, we report safety and antitumor efficacy of the murine version of the STC vaccine on CT26 BALB/c CRC syngeneic murine models. We showed that one cell line (1CL)-based STC vaccine suppressed tumor growth and extended survival. In addition, three cell lines (3CL)-based STC vaccine significantly improves these parameters by presenting additional tumor-related antigens inducing a multi-specific anti-tumor immune response. Furthermore, proteomic analyses validated that the 3CL-based STC vaccine represents a wider quality range of tumor-related proteins than the 1CL-based STC vaccine covering key categories of tumor antigens related to tumor plasticity and treatment resistance. We also evaluated the efficacy of STC vaccine in an MC38 anti-PD-1 resistant syngeneic murine model. Vaccination with the 3CL-based STC vaccine significantly improved survival and showed a confirmed complete response with an antitumor activity carried by the increase of CD8+ lymphocyte T cells and M1 macrophage infiltration. These results demonstrate the potential of this technology to produce human vaccines for the treatment of patients with CRC.Item Expression of NeuGc on Pig Corneas and Its Potential Significance in Pig Corneal Xenotransplantation(Wolters Kluwer, 2016-01) Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka; Department of Surgery, IU School of MedicinePURPOSE: Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (1) to document the lack of NeuGc expression on corneas and aortas and cultured endothelial cells [aortic endothelial cells (AECs); corneal (CECs)] of GTKO/NeuGcKO pigs, and (2) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. METHODS: Wild-type (WT), GTKO, and GTKO/NeuGcKO pigs were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and human IgM and IgG binding to tissues was determined. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. RESULTS: Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither humans nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared with binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than that to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. CONCLUSIONS: The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide a better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas.Item Features of Autoimmune Hepatitis in Patients With Drug-induced Liver Injury(Elsevier, 2017-01) de Boer, Ynto S.; Kosinski, Andrzej S.; Urban, Thomas J.; Zhao, Zhen; Long, Nanye; Chalasani, Naga; Kleiner, David E.; Hoofnagle, Jay H.; Drug-Induced Liver Injury Network.; Medicine, School of MedicineBACKGROUND & AIMS: Drug-induced liver injury (DILI) has features similar to those of other liver diseases including autoimmune hepatitis (AIH). We aimed to characterize the clinical and autoimmune features of liver injury caused by nitrofurantoin, minocycline, methyldopa, or hydralazine. METHODS: We analyzed data from 88 cases of DILI attributed to nitrofurantoin, minocycline, methyldopa, or hydralazine included in the Drug-Induced Liver Injury Network prospective study from 2004 through 2014. Sera were collected from patients at baseline and follow-up examination and tested for levels of immunoglobulin G (IgG), antibodies to nuclear antigen (ANA), smooth muscle (SMA), and soluble liver antigen (SLA). An autoimmune score was derived on the basis of increases in levels of IgG, ANA, SMA, and SLA (assigned values of 0, 1+, or 2+). AIH-associated HLA-DRB1*03:01 and HLA-DRB1*04:01 allele frequencies were compared with those of the general population (controls). RESULTS: Of the 88 cases, 80 were women (91%), 74% had hepatocellular injury, and 25% had severe injury. At the onset of DILI, 39% of cases had increased levels of IgG, 72% had increased levels of ANA, 60% had increased levels of SMA, and none had increases in SLA. A phenotype of autoimmunity (autoimmune score ≥2) was observed in 82% of cases attributed to nitrofurantoin and 73% of cases attributed to minocycline (73%) but only 55% of cases attributed to methyldopa and 43% of cases attributed to hydralazine (P = .16 for nitrofurantoin and minocycline vs methyldopa and hydralazine). We observed a decrease in numbers of serum samples positive for ANA (P = .01) or SMA (P < .001) and in autoimmune scores (P < .001) between DILI onset and follow-up. Similar percentages of patients with DILI had HLA-DRB1*03:01 (15%) and HLA-DRB1*04:01 (9%) as controls (12% and 9%, respectively). CONCLUSIONS: In analysis of data from the DILIN prospective study, we found that most cases of DILI attributed to nitrofurantoin or minocycline and about half of cases that were due to methyldopa and hydralazine have a phenotype of autoimmunity similar to AIH. These features decrease with recovery of the injury and are not associated with the typical HLA alleles found in patients with idiopathic AIH.