- Browse by Subject
Browsing by Subject "Imaging, Three-Dimensional"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item An analytical approach to 3D orthodontic load systems(The Angle Orthodontist, 2014-09) Katona, Thomas R.; Isikbay, Serkis C.; Chen, Jie; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryOBJECTIVE: To present and demonstrate a pseudo three-dimensional (3D) analytical approach for the characterization of orthodontic load (force and moment) systems. MATERIALS AND METHODS: Previously measured 3D load systems were evaluated and compared using the traditional two-dimensional (2D) plane approach and the newly proposed vector method. RESULTS: Although both methods demonstrated that the loop designs were not ideal for translatory space closure, they did so for entirely different and conflicting reasons. CONCLUSIONS: The traditional 2D approach to the analysis of 3D load systems is flawed, but the established 2D orthodontic concepts can be substantially preserved and adapted to 3D with the use of a modified coordinate system that is aligned with the desired tooth translation.Item Doppler fluctuation spectroscopy of intracellular dynamics in living tissue(Optical Society of America, 2019-04-01) Li, Zhe; Sun, Hao; Turek, John; Jalal, Shadia; Childress, Michael; Nolte, David D.; Medicine, School of MedicineIntracellular dynamics in living tissue are dominated by active transport driven by bioenergetic processes far from thermal equilibrium. Intracellular constituents typically execute persistent walks. In the limit of long mean free paths, the persistent walks are ballistic, exhibiting a "Doppler edge" in light scattering fluctuation spectra. At shorter transport lengths, the fluctuations are described by lifetime-broadened Doppler spectra. Dynamic light scattering from transport in the ballistic, diffusive, or the crossover regimes is derived analytically, including the derivation of autocorrelation functions through a driven damped harmonic oscillator analog for light scattering from persistent walks. The theory is validated through Monte Carlo simulations. Experimental evidence for the Doppler edge in three-dimensional (3D) living tissue is obtained using biodynamic imaging based on low-coherence interferometry and digital holography.Item Effects of rapid maxillary expansion on the cranial and circummaxillary sutures(Elsevier, 2011-10) Ghoneima, Ahmed; Abdel-Fattah, Ezzat; Hartsfield, James; El-Bedwehi, Ashraf; Kamel, Ayman; Kula, Katherine; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryINTRODUCTION: The aim of this study was to determine whether the orthopedic forces of rapid maxillary expansion cause significant quantitative changes in the cranial and the circummaxillary sutures. METHODS: Twenty patients (mean age, 12.3 ± 1.9 years) who required rapid maxillary expansion as a part of their comprehensive orthodontic treatment had preexpansion and postexpansion computed tomography scans. Ten cranial and circummaxillary sutures were located and measured on one of the axial, coronal, or sagittal sections of each patient's preexpansion and postexpansion computed tomography scans. Quantitative variables between the 2 measurements were compared by using the Wilcoxon signed rank test. A P value less than 0.05 was considered statistically significant. RESULTS: Rapid maxillary expansion produced significant width increases in the intermaxillary, internasal, maxillonasal, frontomaxillary, and frontonasal sutures, whereas the frontozygomatic, zygomaticomaxillary, zygomaticotemporal, and pterygomaxillary sutures showed nonsignificant changes. The greatest increase in width was recorded for the intermaxillary suture (1.7 ± 0.9 mm), followed by the internasal suture (0.6 ± 0.3 mm), and the maxillonasal suture (0.4 ± 0.2 mm). The midpalatal suture showed the greatest increase in width at the central incisor level (1.6 ± 0.8 mm) followed by the increases in width at the canine level (1.5 ± 0.8 mm) and the first molar level (1.2 ± 0.6 mm). CONCLUSIONS: Forces elicited by rapid maxillary expansion affect primarily the anterior sutures (intermaxillary and maxillary frontal nasal interfaces) compared with the posterior (zygomatic interface) craniofacial structures.Item Human connectome module pattern detection using a new multi-graph MinMax cut model(Springer, 2014) Wang, De; Wang, Yang; Nie, Feiping; Cai, Weidong; Saykin, Andrew J.; Shen, Li; Huang, Heng; Department of Radiology and Imaging Sciences, IU School of MedicineMany recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.Item In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging(Elsevier, 2014-01-15) Freeman, Kim; Tao, Wen; Sun, Hongli; Soonpaa, Mark H.; Rubart, Michael; Department of Medicine, IU School of MedicineBackground Sympathetic nerve wiring in the mammalian heart has remained largely unexplored. Resolving the wiring diagram of the cardiac sympathetic network would help establish the structural underpinnings of neurocardiac coupling. New Method We used two-photon excitation fluorescence microscopy, combined with a computer-assisted 3-D tracking algorithm, to map the local sympathetic circuits in living hearts from adult transgenic mice expressing enhanced green fluorescent protein (EGFP) in peripheral adrenergic neurons. Results Quantitative co-localization analyses confirmed that the intramyocardial EGFP distribution recapitulated the anatomy of the sympathetic arbor. In the left ventricular subepicardium of the uninjured heart, the sympathetic network was composed of multiple subarbors, exhibiting variable branching and looping topology. Axonal branches did not overlap with each other within their respective parental subarbor nor with neurites of annexed subarbors. The sympathetic network in the border zone of a 2-week-old myocardial infarction was characterized by substantive rewiring, which included spatially heterogeneous loss and gain of sympathetic fibers and formation of multiple, predominately nested, axon loops of widely variable circumference and geometry. Comparison with Existing Methods In contrast to mechanical tissue sectioning methods that may involve deformation of tissue and uncertainty in registration across sections, our approach preserves continuity of structure, which allows tracing of neurites over distances, and thus enables derivation of the three-dimensional and topological morphology of cardiac sympathetic nerves. Conclusions Our assay should be of general utility to unravel the mechanisms governing sympathetic axon spacing during development and disease.Item Three-dimensional canine displacement patterns in response to translation and controlled tipping retraction strategies(The Angle Orthodontist, 2015-01) Li, Shuning; Xia, Zeyang; Liu, Sean Shih-Yao; Eckert, George; Chen, Jie; Department of Mechanical Engineering, School of Engineering and TechnologyOBJECTIVE: To validate whether applying a well-defined initial three-dimensional (3D) load can create consistently expected tooth movement in patients. MATERIALS AND METHODS: Twenty-one patients who needed bilateral canine retraction to close extraction space were selected for this split-mouth clinical trial. After initial alignment and leveling, two canines in each patient were randomly assigned to receive either translation (TR) or controlled tipping (CT) load. The load was delivered by segmental T-loops designed to give specific initial moment/force ratios to the canines in each treatment interval (TI), verified with an orthodontic force tester. Maxillary dental casts were made before canine retraction and after each TI. The casts were digitized with a 3D laser scanner. The digital models were superimposed on the palatal rugae region. The 3D canine displacements and the displacement patterns in terms of TR, CT, and torque were calculated for each TI. RESULTS: The method can reliably detect a TR displacement greater than 0.3 mm and a rotation greater than 1.5°. Ninety-two TIs had displacements that were greater than 0.3 mm and were used for further analysis. Most displacements were oriented within ±45° from the distal direction. The displacement pattern in terms of TR or CT was not uniquely controlled by the initial moment/force ratio. CONCLUSIONS: The initial load system is not the only key factor controlling tooth movement. Using a segmental T-loop with a well-controlled load system, large variations in canine displacement can be expected clinically.