- Browse by Subject
Browsing by Subject "Idiopathic pulmonary fibrosis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cross-Talk between Transforming Growth Factor-β and Periostin Can Be Targeted for Pulmonary Fibrosis(American Thoracic Society, 2020-02) Nanri, Yasuhiro; Nunomura, Satoshi; Terasaki, Yasuhiro; Yoshihara, Tomohito; Hirano, Yusuke; Yokosaki, Yasuyuki; Yamaguchi, Yukie; Feghali-Bostwick, Carol; Ajito, Keiichi; Murakami, Shoichi; Conway, Simon J.; Izuhara, Kenji; Pediatrics, School of MedicineIdiopathic pulmonary fibrosis (IPF) is a devastating disease characterized as progressive and irreversible fibrosis in the interstitium of lung tissues. There is still an unmet need to develop a novel therapeutic drug for IPF. We have previously demonstrated that periostin, a matricellular protein, plays an important role in the pathogenesis of pulmonary fibrosis. However, the underlying mechanism of how periostin causes pulmonary fibrosis remains unclear. In this study, we sought to learn whether the cross-talk between TGF-β (transforming growth factor-β), a central mediator in pulmonary fibrosis, and periostin in lung fibroblasts leads to generation of pulmonary fibrosis and whether inhibitors for integrin αVβ3, a periostin receptor, can block pulmonary fibrosis in model mice and the TGF-β signals in fibroblasts from patients with IPF. We found that cross-talk exists between TGF-β and periostin signals via αVβ3/β5 converging into Smad3. This cross-talk is necessary for the expression of TGF-β downstream effector molecules important for pulmonary fibrosis. Moreover, we identified several potent integrin low-molecular-weight inhibitors capable of blocking cross-talk with TGF-β signaling. One of the compounds, CP4715, attenuated bleomycin-induced pulmonary fibrosis in vivo in mice and the TGF-β signals in vitro in fibroblasts from patients with IPF. These results suggest that the cross-talk between TGF-β and periostin can be targeted for pulmonary fibrosis and that CP4715 can be a potential therapeutic agent to block this cross-talk.Item Roles of Periostin in Respiratory Disorders(American Thoracic Society, 2016-05) Izuhara, Kenji; Conway, Simon J.; Moore, Bethany B.; Matsumoto, Hisako; Holweg, Cecile T. J.; Matthews, John G.; Arron, Joseph R.; Medicine, School of MedicinePeriostin is a matricellular protein that has been implicated in many disease states. It interacts with multiple signaling cascades to modulate the expression of downstream genes that regulate cellular interactions within the extracellular matrix. This review focuses on the role of periostin in respiratory diseases, including asthma and idiopathic pulmonary fibrosis, and its potential to help guide treatment or assess prognosis. Epithelial injury is a common feature of many respiratory diseases, resulting in the secretion, among others, of periostin, which is subsequently involved in airway remodeling and other aspects of pulmonary pathophysiology. In asthma, periostin is recognized as a biomarker of type 2 inflammation; POSTN gene expression is up-regulated in bronchial epithelial cells by IL-13 and IL-4. Serum periostin has been evaluated for the identification of patients with increased clinical benefit from treatment with anti-IL-13 (lebrikizumab, tralokinumab) and anti-IgE (omalizumab) therapy and may be prognostic for increased risk of asthma exacerbations and progressive lung function decline. Furthermore, in asthma, periostin may regulate subepithelial fibrosis and mucus production and may serve as a systemic biomarker of eosinophilic airway inflammation. Periostin is also highly expressed in the lungs of patients with idiopathic pulmonary fibrosis, and its serum levels may predict clinical progression. Overall, periostin contributes to multiple pathogenic processes across respiratory diseases, and peripheral blood levels of periostin may have utility as a biomarker of treatment response and disease progression.