- Browse by Subject
Browsing by Subject "IR sensor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dynamic thermal/acoustic response for human bone materials at different energy levels: A diagnosis approach(Elsevier, 2016-10-31) Thella, Ashok Kumar; Rizkalla, James; Rathi, Neeraj; Kakani, Monika; Helmy, Ahdy; Salama, Paul; Rizkalla, Maher E.; Electrical and Computer Engineering, School of Engineering and TechnologyBackground The non-invasive diagnostic approaches have gained high attention in recent years, utilizing high technology sensor systems, including infrared, microwave devices, acoustic transducers, etc. The patient safety, high resolution images, and reliability are among the driving forces toward high technology approaches. The thermal and acoustic responses of the materials may reflect the important research parameters such as penetration depth, power consumption, and temperature change used for the practical models of the system. This paper emphasizes the approach for orthopedic application where the bone densities were considered in simulation to designate the type of human bones. Methods Thermal energy pulses were applied in order to study the penetration depth, the maximum temperature change; spatially and dynamically, and the acoustic pressure distribution over the bone thickness. The study was performed to optimize the amount of energy introduced into the materials that generate the temperature value for high resolution beyond the noise level. Results Three different energy pulses were used; 1 J, 3 J and 5 J. The thermal energy applied to the four bone materials, cancellous bone, cortical bone, red bone marrow, and yellow bone marrow were producing relative changes in temperature. The maximum change ranges from 0.5 K to 2 K for the applied pulses. The acoustic pressure also ranges from 210 to 220 dB among the various types of bones. Conclusion The results obtained from simulation suggest that a practical model utilizing infra-red scanning probe and piezoelectric devices may serve for the orthopedic diagnostic approach. The simulations for multiple layers such as skin interfaced with bone will be reserved for future considerations.Item Instrumentation and Data Collection for Sheet Glass Production(2019) Shaw, David; Cooney, ElaineKokomo Opalescent Glass (KOG) is a manufacturer of art glass located in Kokomo Indiana. KOG has high defect rates in their sheet glass production process that can vary greatly depending on operator experience and environmental factors. This project aimed to improve the repeatability of KOG’s sheet glass production process by enabling them to monitor the temperature at which glass sheets enter their annealing oven and to decrease their defect rate, which has historically been around 25%. Through integrating instrumentation and data collection into KOG’s production process, defects in sheet glass production were successfully decreased by approximately 10% in the weeks following the installation of the device created in this project.