ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Hypoglycemic agents"

Now showing 1 - 10 of 12
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Randomized Clinical Trial Assessing Continuous Glucose Monitoring (CGM) Use With Standardized Education With or Without a Family Behavioral Intervention Compared With Fingerstick Blood Glucose Monitoring in Very Young Children With Type 1 Diabetes
    (American Diabetes Association, 2021) Strategies to Enhance New CGM Use in Early Childhood (SENCE) Study Group; Pediatrics, School of Medicine
    Objective: This study evaluated the effects of continuous glucose monitoring (CGM) combined with family behavioral intervention (CGM+FBI) and CGM alone (Standard-CGM) on glycemic outcomes and parental quality of life compared with blood glucose monitoring (BGM) in children ages 2 to <8 years with type 1 diabetes. Research design and methods: This was a multicenter (N = 14), 6-month, randomized controlled trial including 143 youth 2 to <8 years of age with type 1 diabetes. Primary analysis included treatment group comparisons of percent time in range (TIR) (70-180 mg/dL) across follow-up visits. Results: Approximately 90% of participants in the CGM groups used CGM ≥6 days/week at 6 months. Between-group TIR comparisons showed no significant changes: CGM+FBI vs. BGM 3.2% (95% CI -0.5, 7.0), Standard-CGM vs. BGM 0.5% (-2.6 to 3.6), CGM+FBI vs. Standard-CGM 2.7% (-0.6, 6.1). Mean time with glucose level <70 mg/dL was reduced from baseline to follow-up in the CGM+FBI (from 5.2% to 2.6%) and Standard-CGM (5.8% to 2.5%) groups, compared with 5.4% to 5.8% with BGM (CGM+FBI vs. BGM, P < 0.001, and Standard-CGM vs. BGM, P < 0.001). No severe hypoglycemic events occurred in the CGM+FBI group, one occurred in the Standard-CGM group, and five occurred in the BGM group. CGM+FBI parents reported greater reductions in diabetes burden and fear of hypoglycemia compared with Standard-CGM (P = 0.008 and 0.04) and BGM (P = 0.02 and 0.002). Conclusions: CGM used consistently over a 6-month period in young children with type 1 diabetes did not improve TIR but did significantly reduce time in hypoglycemia. The FBI benefited parental well-being.
  • Loading...
    Thumbnail Image
    Item
    Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin
    (American Diabetes Association, 2020-08) Yang, Jing Fan; Gong, Xun; Bakh, Naveed A.; Carr, Kelley; Phillips, Nelson F.B.; Ismail-Beigi, Faramarz; Weiss, Michael A.; Strano, Michael S.; Biochemistry and Molecular Biology, School of Medicine
    Despite considerable progress, development of glucose-responsive insulins (GRIs) still largely depends on empirical knowledge and tedious experimentation-especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH) built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI's clinical translation by connecting each candidate's efficacies in rats, mice, and humans. The resultant mapping helps to find GRIs that appear promising in rodents but underperform in humans (i.e., false positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false negatives). We condense such information onto a "translatability grid" as a straightforward, visual guide for GRI development.
  • Loading...
    Thumbnail Image
    Item
    Effect of Tight Glycemic Control on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial
    (American Medical Association, 2023) McVean, Jennifer; Forlenza, Gregory P.; Beck, Roy W.; Bauza, Colleen; Bailey, Ryan; Buckingham, Bruce; DiMeglio, Linda A.; Sherr, Jennifer L.; Clements, Mark; Neyman, Anna; Evans-Molina, Carmella; Sims, Emily K.; Messer, Laurel H.; Ekhlaspour, Laya; McDonough, Ryan; Van Name, Michelle; Rojas, Diana; Beasley, Shannon; DuBose, Stephanie; Kollman, Craig; Moran, Antoinette; CLVer Study Group; Pediatrics, School of Medicine
    Importance: Near normalization of glucose levels instituted immediately after diagnosis of type 1 diabetes has been postulated to preserve pancreatic beta cell function by reducing glucotoxicity. Previous studies have been hampered by an inability to achieve tight glycemic goals. Objective: To determine the effectiveness of intensive diabetes management to achieve near normalization of glucose levels on preservation of pancreatic beta cell function in youth with newly diagnosed type 1 diabetes. Design, setting, and participants: This randomized, double-blind, clinical trial was conducted at 6 centers in the US (randomizations from July 20, 2020, to October 13, 2021; follow-up completed September 15, 2022) and included youths with newly diagnosed type 1 diabetes aged 7 to 17 years. Interventions: Random assignment to intensive diabetes management, which included use of an automated insulin delivery system (n = 61), or standard care, which included use of a continuous glucose monitor (n = 52), as part of a factorial design in which participants weighing 30 kg or more also were assigned to receive either oral verapamil or placebo. Main outcomes and measures: The primary outcome was mixed-meal tolerance test-stimulated C-peptide area under the curve (a measure of pancreatic beta cell function) 52 weeks from diagnosis. Results: Among 113 participants (mean [SD] age, 11.8 [2.8] years; 49 females [43%]; mean [SD] time from diagnosis to randomization, 24 [5] days), 108 (96%) completed the trial. The mean C-peptide area under the curve decreased from 0.57 pmol/mL at baseline to 0.45 pmol/mL at 52 weeks in the intensive management group, and from 0.60 to 0.50 pmol/mL in the standard care group (treatment group difference, -0.01 [95% CI, -0.11 to 0.10]; P = .89). The mean time in the target range of 70 to 180 mg/dL, measured with continuous glucose monitoring, at 52 weeks was 78% in the intensive management group vs 64% in the standard care group (adjusted difference, 16% [95% CI, 10% to 22%]). One severe hypoglycemia event and 1 diabetic ketoacidosis event occurred in each group. Conclusions and relevance: In youths with newly diagnosed type 1 diabetes, intensive diabetes management, which included automated insulin delivery, achieved excellent glucose control but did not affect the decline in pancreatic C-peptide secretion at 52 weeks.
  • Loading...
    Thumbnail Image
    Item
    Effect of Verapamil on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial
    (American Medical Association, 2023) Forlenza, Gregory P.; McVean, Jennifer; Beck, Roy W.; Bauza, Colleen; Bailey, Ryan; Buckingham, Bruce; DiMeglio, Linda A.; Sherr, Jennifer L.; Clements, Mark; Neyman, Anna; Evans-Molina, Carmella; Sims, Emily K.; Messer, Laurel H.; Ekhlaspour, Laya; McDonough, Ryan; Van Name, Michelle; Rojas, Diana; Beasley, Shannon; DuBose, Stephanie; Kollman, Craig; Moran, Antoinette; CLVer Study Group; Pediatrics, School of Medicine
    Importance: In preclinical studies, thioredoxin-interacting protein overexpression induces pancreatic beta cell apoptosis and is involved in glucotoxicity-induced beta cell death. Calcium channel blockers reduce these effects and may be beneficial to beta cell preservation in type 1 diabetes. Objective: To determine the effect of verapamil on pancreatic beta cell function in children and adolescents with newly diagnosed type 1 diabetes. Design, setting, and participants: This double-blind, randomized clinical trial including children and adolescents aged 7 to 17 years with newly diagnosed type 1 diabetes who weighed 30 kg or greater was conducted at 6 centers in the US (randomized participants between July 20, 2020, and October 13, 2021) and follow-up was completed on September 15, 2022. Interventions: Participants were randomly assigned 1:1 to once-daily oral verapamil (n = 47) or placebo (n = 41) as part of a factorial design in which participants also were assigned to receive either intensive diabetes management or standard diabetes care. Main outcomes and measures: The primary outcome was area under the curve values for C-peptide level (a measure of pancreatic beta cell function) stimulated by a mixed-meal tolerance test at 52 weeks from diagnosis of type 1 diabetes. Results: Among 88 participants (mean age, 12.7 [SD, 2.4] years; 36 were female [41%]; and the mean time from diagnosis to randomization was 24 [SD, 4] days), 83 (94%) completed the trial. In the verapamil group, the mean C-peptide area under the curve was 0.66 pmol/mL at baseline and 0.65 pmol/mL at 52 weeks compared with 0.60 pmol/mL at baseline and 0.44 pmol/mL at 52 weeks in the placebo group (adjusted between-group difference, 0.14 pmol/mL [95% CI, 0.01 to 0.27 pmol/mL]; P = .04). This equates to a 30% higher C-peptide level at 52 weeks with verapamil. The percentage of participants with a 52-week peak C-peptide level of 0.2 pmol/mL or greater was 95% (41 of 43 participants) in the verapamil group vs 71% (27 of 38 participants) in the placebo group. At 52 weeks, hemoglobin A1c was 6.6% in the verapamil group vs 6.9% in the placebo group (adjusted between-group difference, -0.3% [95% CI, -1.0% to 0.4%]). Eight participants (17%) in the verapamil group and 8 participants (20%) in the placebo group had a nonserious adverse event considered to be related to treatment. Conclusions and relevance: In children and adolescents with newly diagnosed type 1 diabetes, verapamil partially preserved stimulated C-peptide secretion at 52 weeks from diagnosis compared with placebo. Further studies are needed to determine the longitudinal durability of C-peptide improvement and the optimal length of therapy.
  • Loading...
    Thumbnail Image
    Item
    Endpoints for clinical trials in type 1 diabetes drug development
    (Elsevier, 2024) Galderisi, Alfonso; Marks, Brynn E.; DiMeglio, Linda A.; de Beaufort, Carine; Pediatrics, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    The Evolution of Hemoglobin A1c Targets for Youth With Type 1 Diabetes: Rationale and Supporting Evidence
    (American Diabetes Association, 2021) Redondo, Maria J.; Libman, Ingrid; Maahs, David M.; Lyons, Sarah K.; Saraco, Mindy; Reusch, Jane; Rodriguez, Henry; DiMeglio, Linda A.; Pediatrics, School of Medicine
    The American Diabetes Association 2020 Standards of Medical Care in Diabetes (Standards of Care) recommends a hemoglobin A1c (A1C) of <7% (53 mmol/mol) for many children with type 1 diabetes (T1D), with an emphasis on target personalization. A higher A1C target of <7.5% may be more suitable for youth who cannot articulate symptoms of hypoglycemia or have hypoglycemia unawareness and for those who do not have access to analog insulins or advanced diabetes technologies or who cannot monitor blood glucose regularly. Even less stringent A1C targets (e.g., <8%) may be warranted for children with a history of severe hypoglycemia, severe morbidities, or short life expectancy. During the "honeymoon" period and in situations where lower mean glycemia is achievable without excessive hypoglycemia or reduced quality of life, an A1C <6.5% may be safe and effective. Here, we provide a historical perspective of A1C targets in pediatrics and highlight evidence demonstrating detrimental effects of hyperglycemia in children and adolescents, including increased likelihood of brain structure and neurocognitive abnormalities, microvascular and macrovascular complications, long-term effects, and increased mortality. We also review data supporting a decrease over time in overall severe hypoglycemia risk for youth with T1D, partly associated with the use of newer insulins and devices, and weakened association between lower A1C and severe hypoglycemia risk. We present common barriers to achieving glycemic targets in pediatric diabetes and discuss some strategies to address them. We aim to raise awareness within the community on Standards of Care updates that impact this crucial goal in pediatric diabetes management.
  • Loading...
    Thumbnail Image
    Item
    Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine After Myocardial Infarction
    (American Diabetes Association, 2017-08) Sassoon, Daniel J.; Tune, Johnathan D.; Mather, Kieren J.; Noblet, Jillian N.; Eagleson, Mackenzie A.; Conteh, Abass M.; Sturek, Joshua T.; Goodwill, Adam G.; Cellular and Integrative Physiology, School of Medicine
    This study tested the hypothesis that glucagon-like peptide 1 (GLP-1) therapies improve cardiac contractile function at rest and in response to adrenergic stimulation in obese swine after myocardial infarction. Obese Ossabaw swine were subjected to gradually developing regional coronary occlusion using an ameroid occluder placed around the left anterior descending coronary artery. Animals received subcutaneous injections of saline or liraglutide (0.005-0.015 mg/kg/day) for 30 days after ameroid placement. Cardiac performance was assessed at rest and in response to sympathomimetic challenge (dobutamine 0.3-10 μg/kg/min) using a left ventricular pressure/volume catheter. Liraglutide increased diastolic relaxation (dP/dt; Tau 1/2; Tau 1/e) during dobutamine stimulation (P < 0.01) despite having no influence on the magnitude of myocardial infarction. The slope of the end-systolic pressure volume relationship (i.e., contractility) increased with dobutamine after liraglutide (P < 0.001) but not saline administration (P = 0.63). Liraglutide enhanced the slope of the relationship between cardiac power and pressure volume area (i.e., cardiac efficiency) with dobutamine (P = 0.017). Hearts from animals treated with liraglutide demonstrated decreased β1-adrenoreceptor expression. These data support that GLP-1 agonism augments cardiac efficiency via attenuation of maladaptive sympathetic signaling in the setting of obesity and myocardial infarction.
  • Loading...
    Thumbnail Image
    Item
    Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials
    (Elsevier, 2013) Moran, Antoinette; Bundy, Brian; Becker, Dorothy J.; DiMeglio, Linda A.; Gitelman, Stephen E.; Goland, Robin; Greenbaum, Carla J.; Herold, Kevan C.; Marks, Jennifer B.; Raskin, Philip; Sanda, Srinath; Schatz, Desmond; Wherrett, Diane K.; Wilson, Darrell M.; Krischer, Jeffrey P.; Skyler, Jay S.; Pickersgill, Linda; de Koning, Eelco; Ziegler, Anette-G; Böehm, Bernhard; Badenhoop, Klaus; Schloot, Nanette; Bak, Jens Friis; Pozzilli, Paolo; Mauricio, Didac; Donath, Marc Y.; Castaño, Luis; Wägner, Ana; Lervang, Hans Henrik; Perrild, Hans; Poulsen, Thomas Mandrup; Pediatrics, School of Medicine
    Background: Innate immunity contributes to the pathogenesis of autoimmune diseases, such as type 1 diabetes, but until now no randomised, controlled trials of blockade of the key innate immune mediator interleukin-1 have been done. We aimed to assess whether canakinumab, a human monoclonal anti-interleukin-1 antibody, or anakinra, a human interleukin-1 receptor antagonist, improved β-cell function in recent-onset type 1 diabetes. Methods: We did two randomised, placebo-controlled trials in two groups of patients with recent-onset type 1 diabetes and mixed-meal-tolerance-test-stimulated C peptide of at least 0·2 nM. Patients in the canakinumab trial were aged 6-45 years and those in the anakinra trial were aged 18-35 years. Patients in the canakinumab trial were enrolled at 12 sites in the USA and Canada and those in the anakinra trial were enrolled at 14 sites across Europe. Participants were randomly assigned by computer-generated blocked randomisation to subcutaneous injection of either 2 mg/kg (maximum 300 mg) canakinumab or placebo monthly for 12 months or 100 mg anakinra or placebo daily for 9 months. Participants and carers were masked to treatment assignment. The primary endpoint was baseline-adjusted 2-h area under curve C-peptide response to the mixed meal tolerance test at 12 months (canakinumab trial) and 9 months (anakinra trial). Analyses were by intention to treat. These studies are registered with ClinicalTrials.gov, numbers NCT00947427 and NCT00711503, and EudraCT number 2007-007146-34. Findings: Patients were enrolled in the canakinumab trial between Nov 12, 2010, and April 11, 2011, and in the anakinra trial between Jan 26, 2009, and May 25, 2011. 69 patients were randomly assigned to canakinumab (n=47) or placebo (n=22) monthly for 12 months and 69 were randomly assigned to anakinra (n=35) or placebo (n=34) daily for 9 months. No interim analyses were done. 45 canakinumab-treated and 21 placebo-treated patients in the canakinumab trial and 25 anakinra-treated and 26 placebo-treated patients in the anakinra trial were included in the primary analyses. The difference in C peptide area under curve between the canakinumab and placebo groups at 12 months was 0·01 nmol/L (95% CI -0·11 to 0·14; p=0·86), and between the anakinra and the placebo groups at 9 months was 0·02 nmol/L (-0·09 to 0·15; p=0·71). The number and severity of adverse events did not differ between groups in the canakinumab trial. In the anakinra trial, patients in the anakinra group had significantly higher grades of adverse events than the placebo group (p=0·018), which was mainly because of a higher number of injection site reactions in the anakinra group. Interpretation: Canakinumab and anakinra were safe but were not effective as single immunomodulatory drugs in recent-onset type 1 diabetes. Interleukin-1 blockade might be more effective in combination with treatments that target adaptive immunity in organ-specific autoimmune disorders.
  • Loading...
    Thumbnail Image
    Item
    ISPAD Clinical Practice Consensus Guidelines 2022: Exercise in children and adolescents with diabetes
    (Wiley, 2022) Adolfsson, Peter; Taplin, Craig E.; Zaharieva, Dessi P.; Pemberton, John; Davis, Elizabeth A.; Riddell, Michael C.; McGavock, Jonathan; Moser, Othmar; Szadkowska, Agnieszka; Lopez, Prudence; Santiprabhob, Jeerunda; Frattolin, Elena; Griffiths, Gavin; DiMeglio, Linda A.; Pediatrics, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Lifestyle and Metformin Ameliorate Insulin Sensitivity Independently of the Genetic Burden of Established Insulin Resistance Variants in Diabetes Prevention Program Participants
    (American Diabetes Association, 2016-02) Hivert, Marie-France; Christophi, Costas A.; Franks, Paul W.; Jablonski, Kathleen A.; Ehrmann, David A.; Kahn, Steven E.; Horton, Edward S.; Pollin, Toni I.; Mather, Kieren J.; Perreault, Leigh; Barrett-Connor, Elizabeth; Knowler, William C.; Florez, Jose C.; Department of Medicine, IU School of Medicine
    Large genome-wide association studies of glycemic traits have identified genetics variants that are associated with insulin resistance (IR) in the general population. It is unknown whether people with genetic enrichment for these IR variants respond differently to interventions that aim to improve insulin sensitivity. We built a genetic risk score (GRS) based on 17 established IR variants and effect sizes (weighted IR-GRS) in 2,713 participants of the Diabetes Prevention Program (DPP) with genetic consent. We tested associations between the weighted IR-GRS and insulin sensitivity index (ISI) at baseline in all participants, and with change in ISI over 1 year of follow-up in the DPP intervention (metformin and lifestyle) and control (placebo) arms. All models were adjusted for age, sex, ethnicity, and waist circumference at baseline (plus baseline ISI for 1-year ISI change models). A higher IR-GRS was associated with lower baseline ISI (β = -0.754 [SE = 0.229] log-ISI per unit, P = 0.001 in fully adjusted models). There was no differential effect of treatment for the association between the IR-GRS on the change in ISI; higher IR-GRS was associated with an attenuation in ISI improvement over 1 year (β = -0.520 [SE = 0.233], P = 0.03 in fully adjusted models; all treatment arms). Lifestyle intervention and metformin treatment improved the ISI, regardless of the genetic burden of IR variants.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University