- Browse by Subject
Browsing by Subject "Hypoglycemia"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Comparative risk of severe hypoglycemia among concomitant users of thiazolidinedione antidiabetic agents and antihyperlipidemics(Elsevier, 2016-05) Leonard, Charles E.; Han, Xu; Bilker, Warren B.; Flory, James H.; Brensinger, Colleen M.; Flockhart, David A.; Gagne, Joshua J.; Cardillo, Serena; Hennessy, Sean; Department of Medicine, IU School of MedicineWe conducted high-dimensional propensity score-adjusted cohort studies to examine whether thiazolidinedione use with a statin or fibrate was associated with an increased risk of severe hypoglycemia. We found that concomitant therapy with a thiazolidinedione+fibrate was associated with a generally delayed increased risk of severe hypoglycemia.Item Correlation Among Hypoglycemia, Glycemic Variability, and C-Peptide Preservation After Alefacept Therapy in Patients with Type 1 Diabetes Mellitus: Analysis of Data from the Immune Tolerance Network T1DAL Trial(Elsevier, 2016-06) Pinckney, Ashley; Rigby, Mark R.; Keyes-Elstein, Lynette; Soppe, Carol L.; Nepom, Gerald T.; Ehlers, Mario R.; Pediatrics, School of MedicinePURPOSE: In natural history studies, maintenance of higher levels of C-peptide secretion (a measure of endogenous insulin production) correlates with a lower incidence of major hypoglycemic events in patients with type 1 diabetes mellitus (T1D), but it is unclear whether this is also true for drug-induced C-peptide preservation. METHODS: We analyzed hypoglycemic events and glycemic control data from the T1DAL (Inducing Remission in New-Onset T1D with Alefacept) study, a trial of alefacept in new-onset T1D, which found significant C-peptide preservation at 1 and 2 years. We performed a post hoc analysis using mixed models of the association between the meal-stimulated 4-hour C-peptide AUC (4-hour AUC) and rates of major hypoglycemia, measures of glycemic control (glycosylated hemoglobin [HbA1c]; mean glucometer readings), and variability (glucometer SDs; highest and lowest readings), and an index of partial remission (insulin dose-adjusted HbA1c[ IDAA1c]). FINDINGS: Data from 49 participants (33 in the alefacept group and 16 in the placebo group) were analyzed at baseline and 12 and 24 months. We found that the 4-hour AUC at baseline and at 1 year was a significant predictor of the number of hypoglycemic events during the ensuing 12-month interval (p = 0.030). There was a strong association between the 4-hour AUC and glucometer SDs (P < 0.001), highest readings (p < 0.001), and lowest readings (p = 0.03), all measures of glycemic variability. There was a strong inverse correlation between the 4-hour AUC and 2 measures of glycemic control: HbA1c and mean glucometer readings (both p < 0.001). There was also a strong inverse correlation between the 4-hour AUC and IDAA1c values (p < 0.001), as well as a strong correlation between IDAA1c values and glucometer SDs (p < 0.001), suggesting that reduced glycemic variability is associated with a trend toward partial remission. None of these analyses found a significant difference between the alefacept and placebo groups. IMPLICATIONS: Measures of glycemic variability and control, including rates of hypoglycemia, are significantly correlated with preservation of C-peptide regardless of whether this is achieved by immune intervention with alefacept or natural variability in patients with new-onset T1D. Thus, preservation of endogenous insulin production by an immunomodulatory drug may confer clinical benefits similar to those seen in patients with higher C-peptide secretion due to slow disease progression.Item Dasiglucagon, a next-generation ready-to-use glucagon analog, for treatment of severe hypoglycemia in children and adolescents with type 1 diabetes: Results of a phase 3, randomized controlled trial(Wiley, 2021) Battelino, Tadej; Tehranchi, Ramin; Bailey, Timothy; Dovc, Klemen; Melgaard, Anita; Yager Stone, Jenine; Woerner, Stephanie; von dem Berge, Thekla; DiMeglio, Linda; Danne, Thomas; Pediatrics, School of MedicineBackground: Dasiglucagon, a next-generation, ready-to-use aqueous glucagon analog formulation, has been developed to treat severe hypoglycemia in individuals with diabetes. Objective: The aim of this trial was to evaluate the safety and efficacy of dasiglucagon in pediatric individuals with type 1 diabetes (T1DM). Participants were children and adolescents (6-17 years) with T1DM. Methods: In this randomized double-blind trial, 42 participants were randomly allocated (2:1:1) to a single subcutaneous (SC) injection of dasiglucagon (0.6 mg), placebo, or reconstituted glucagon (GlucaGen; dosed per label) during insulin-induced hypoglycemia. The primary endpoint was time to plasma glucose (PG) recovery (first PG increase ≥20 mg/dL after treatment initiation without rescue intravenous glucose). The primary comparison was dasiglucagon vs. placebo; glucagon acted as a reference. Results: The median time (95% confidence interval) to PG recovery following SC injection was 10 min (8-12) for dasiglucagon vs. 30 min (20 to -) for placebo (P < .001); the median time for glucagon was 10 min (8-12), which did not include the time taken to reconstitute the lyophilized powder. PG recovery was achieved in all participants in the dasiglucagon and glucagon groups within 20 min of dosing compared to 2 out of 11 patients (18%) with placebo. The most frequent adverse events were nausea and vomiting, as expected with glucagon treatment. Conclusions: Consistent with adult phase 3 trials, dasiglucagon rapidly and effectively restored PG levels following insulin-induced hypoglycemia in children and adolescents with T1DM, with an overall safety profile similar to glucagon.Item Development of a Sensor System for Rapid Detection of Volatile Organic Compounds in Biomedical Applications(2021-12) Angarita Rivera, Paula Andrea; Agarwal, Mangilal; Dalir, Hamid; Anwar, SohelVolatile organic compounds (VOCs) are endogenous byproducts of metabolic pathways that can be altered by a disease or condition, leading to an associated and unique VOC profile or signature. Current methodologies for VOC detection include canines, gas chromatography-mass spectrometry (GC-MS), and electronic nose (eNose). Some of the challenges for canines and GC-MS are cost-effectiveness, extensive training, expensive instrumentation. On the other hand, a significant downfall of the eNose is low selectivity. This thesis proposes to design a breathalyzer using chemiresistive gas sensors that detects VOCs from human breath, and subsequently create an interface to process and deliver the results via Bluetooth Low Energy (BLE). Breath samples were collected from patients with hypoglycemia, COVID-19, and healthy controls for both. Samples were processed, analyzed using GC-MS, and probed through statistical analysis. A panel of 6 VOC biomarkers distinguished between hypoglycemia (HYPO) and Normal samples with a training AUC of 0.98 and a testing AUC of 0.93. For COVID-19, a panel of 3 VOC biomarkers distinguished between COVID-19 positive symptomatic (COVID-19) and healthy Control samples with a training area under the curve (AUC) of receiver operating characteristic (ROC) of 1.0 and cross-validation (CV) AUC of 0.99. The model was validated with COVID-19 Recovery samples. The discovery of these biomarkers enables the development of selective gas sensors to detect the VOCs. Polyethylenimine-ether functionalized gold nanoparticle (PEI-EGNP) gas sensors were designed and fabricated in the lab and metal oxide (MOX) semiconductor gas sensors were obtained from Nanoz (Chip 1: SnO2 and Chip 2: WO3). These sensors were tested at different relative humidity (RH) levels and VOC concentrations. The contact angle which measures hydrophobicity was 84° and the thickness of the PEI-EGNP coating was 11 µ m. The PEI-EGNP sensor response at RH 85% had a signal 10x higher than at RH 0%. Optimization of the MOX sensor was performed by changing the heater voltage and concentration of VOCs. At RH 85% and heater voltage of 2500 mV, the performance of the sensors increased. Chip 2 had higher sensitivity towards VOCs especially for one of the VOC biomarkers identified for COVID-19. PCA distinguished VOC biomarkers of HYPO, COVID-19, and healthy human breath using the Nanoz. A sensor interface was created to integrate the PEI-EGNP sensors with the printed circuit board (PCB) and Bluno Nano to perform machine learning. The sensor interface can currently process and make decisions from the data whether the breath is HYPO (-) or Normal (+). This data is then sent via BLE to the Hypo Alert app to display the decision.Item The effect of insulin-induced hypoglycemia on implantation in the rat(1975) Melin, John R.Item Hydrazine and hydrazine MAOI induced hypoglycemia(1968) Potter, William ZeiglerItem Insulin Pump Therapy: Patient Practices and Glycemic Outcomes(Sage, 2018-11) Edem, Dinesh; McCarthy, Patrick; Ng, Jason M.; Stefanovic-Racic, Maja; Korytkowski, Mary T.; Medicine, School of MedicineItem ISPAD Clinical Practice Consensus Guidelines 2022: Editorial(Wiley, 2022) Craig, Maria E.; Codner, Ethel; Mahmud, Farid H.; Marcovecchio, M. Loredana; DiMeglio, Linda A.; Priyambada, Leena; Wolfsdorf, Joseph I.; Pediatrics, School of MedicineItem Long-term Continuous Glucose Monitor Use in Very Young Children With Type 1 Diabetes: One-Year Results From the SENCE Study(Sage, 2023) Van Name, Michelle A.; Kanapka, Lauren G.; DiMeglio, Linda A.; Miller, Kellee M.; Albanese-O’Neill, Anastasia; Commissariat, Persis; Corathers, Sarah D.; Harrington, Kara R.; Hilliard, Marisa E.; Anderson, Barbara J.; Kelley, Jennifer C.; Laffel, Lori M.; MacLeish, Sarah A.; Nathan, Brandon M.; Tamborlane, William V.; Wadwa, R. Paul; Willi, Steven M.; Williams, Kristen M.; Wintergerst, Kupper A.; Woerner, Stephanie; Wong, Jenise C.; DeSalvo, Daniel J.; Pediatrics, School of MedicineObjectives: Achieving optimal glycemic outcomes in young children with type 1 diabetes (T1D) is challenging. This study examined the durability of continuous glucose monitoring (CGM) coupled with a family behavioral intervention (FBI) to improve glycemia. Study design: This one-year study included an initial 26-week randomized controlled trial of CGM with FBI (CGM+FBI) and CGM alone (Standard-CGM) compared with blood glucose monitoring (BGM), followed by a 26-week extension phase wherein the BGM Group received the CGM+FBI (BGM-Crossover) and both original CGM groups continued this technology. Results: Time in range (70-180 mg/dL) did not improve with CGM use (CGM+FBI: baseline 37%, 52 weeks 41%; Standard-CGM: baseline 41%, 52 weeks 44%; BGM-Crossover: 26 weeks 38%, 52 weeks 40%). All three groups sustained decreases in hypoglycemia (<70 mg/dL) with CGM use (CGM+FBI: baseline 3.4%, 52 weeks 2.0%; Standard-CGM: baseline 4.1%, 52 weeks 2.1%; BGM-Crossover: 26 weeks 4.5%, 52 weeks 1.7%, P-values <.001). Hemoglobin A1c was unchanged with CGM use (CGM+FBI: baseline 8.3%, 52 weeks 8.2%; Standard-CGM: baseline 8.2%, 52 weeks 8.0%; BGM-Crossover: 26 weeks 8.1%, 52 weeks 8.3%). Sensor use remained high (52-week study visit: CGM+FBI 91%, Standard-CGM 92%, BGM-Crossover 88%). Conclusion: Over 12 months young children with T1D using newer CGM technology sustained reductions in hypoglycemia and, in contrast to prior studies, persistently wore CGM. However, pervasive hyperglycemia remained unmitigated. This indicates an urgent need for further advances in diabetes technology, behavioral support, and diabetes management educational approaches to optimize glycemia in young children.Item Malyglycemia and health outcomes in hospitalized patients with acute myleoid leukemia(2015-04-09) Storey, Susan; Von Ah, Diane Marie; McDaniel, Anna; Ebright, Patricia R.; Weaver, Michael TimothyAcute Myeloid Leukemia (AML) is the most common hematologic malignancy. Malglycemia is a disorder of glucose metabolism and includes hyperglycemia, hypoglycemia and the combination of hyperglycemia and hypoglycemia. Malglycemia has been shown to occur frequently during hospitalization among critical care patients and has been associated with increased risk of sepsis and mortality. Little is known, however, about the prevalence and role of malglycemia on the health outcomes of AML patients hospitalized for initial induction therapy. Malglycemia may be of particular importance to the patient with AML because, researchers have found that malglycemia may promote cellular changes which facilitate the progression of cancer, alter treatment response, and attenuate immune response. The purpose of this study was to determine the prevalence of malglycemia (hyperglycemia, hypoglycemia or the combination) and to examine its role on a comprehensive set of health outcomes (neutropenic days, infection, and septicemia, and sepsis, induction hospital length of stay, complete remission and mortality) in AML patients hospitalized for initial induction therapy. A retrospective cohort study design was used. Records of 103 AML patients, hospitalized for initial induction chemotherapy were reviewed. Results of the study showed that 98% of the AML patients had at least one episode of hyperglycemia, with a prevalence rate of 33% over the entire induction inpatient hospitalization for this population. All patients noted with hyperglycemia also had hypoglycemia and thus, the prevalence rate of hypoglycemia alone could not be determined. Prevalence of the combination of hyperglycemia and hypoglycemia was 1.4 %. Although not statistically significant, a trend was noted for AML patients with hyperglycemia to experience more days with neutropenia, greater numbers of infection, sepsis, septicemia and death (mortality) than patients without hyperglycemia during induction treatment. Patients with the combination of hyperglycemia and hypoglycemia also experienced an increased risk of developing septicemia (p = .025) and sepsis (p =.057). Future studies with larger sample sizes are needed to confirm these findings.