- Browse by Subject
Browsing by Subject "Hypertension, Pulmonary"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Altered pulmonary arterial smooth muscle with chronic hypoxia-induced pulmonary hypertension(1993) Roepke, Janet ElizabethItem Biomechanical properties of rat pulmonary artery in hypoxia-induced pulmonary hypertension(1991) Griffith, Steven L.Item Cerivastatin Nanoliposome as a Potential Disease Modifying Approach for the Treatment of Pulmonary Arterial Hypertension(American Society for Pharmacology and Experimental Therapeutics, 2018-07) Lee, Young; Pai, S. Balakrishna; Bellamkonda, Ravi V.; Thompson, David H.; Singh, Jaipal; Department of Medicine, IU School of MedicineIn this study we investigated nanoliposome as an approach to tailoring the pharmacology of cerivastatin as a disease-modifying drug for pulmonary arterial hypertension (PAH). Cerivastatin encapsulated liposomes with an average diameter of 98 ± 27 nm were generated by a thin film and freeze-thaw process. The nanoliposomes demonstrated sustained drug-release kinetics in vitro and inhibited proliferation of pulmonary artery (PA) smooth muscle cells with significantly less cellular cytotoxicity as compared with free cerivastatin. When delivered by inhalation to a rat model of monocrotaline-induced PAH, cerivastatin significantly reduced PA pressure from 55.13 ± 9.82 to 35.56 ± 6.59 mm Hg (P < 0.001) and diminished PA wall thickening. Echocardiography showed that cerivastatin significantly reduced right ventricle thickening (monocrotaline: 0.34 ± 0.02 cm vs. cerivastatin: 0.26 ± 0.02 cm; P < 0.001) and increased PA acceleration time (monocrotaline: 13.98 ± 1.14 milliseconds vs. cerivastatin: 21.07 ± 2.80 milliseconds; P < 0.001). Nanoliposomal cerivastatin was equally effective or slightly better than cerivastatin in reducing PA pressure (monocrotaline: 67.06 ± 13.64 mm Hg; cerivastatin: 46.31 ± 7.64 mm Hg vs. liposomal cerivastatin: 37.32 ± 9.50 mm Hg) and improving parameters of right ventricular function as measured by increasing PA acceleration time (monocrotaline: 24.68 ± 3.92 milliseconds; cerivastatin: 32.59 ± 6.10 milliseconds vs. liposomal cerivastatin: 34.96 ± 7.51 milliseconds). More importantly, the rate and magnitude of toxic cerivastatin metabolite lactone generation from the intratracheally administered nanoliposomes was significantly lower as compared with intravenously administered free cerivastatin. These studies show that nanoliposome encapsulation improved in vitro and in vivo pharmacologic and safety profile of cerivastatin and may represent a safer approach as a disease-modifying therapy for PAH.Item Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition(Elsevier, 2017-04) Neto-Neves, Evandro M.; Brown, Mary B.; Zaretskaia, Maria V.; Rezania, Samin; Goodwill, Adam G.; McCarthy, Brian P.; Persohn, Scott A.; Territo, Paul R.; Kline, Jeffrey A.; Emergency Medicine, School of MedicineOur understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments.Item Emerging role of angiogenesis in adaptive and maladaptive right ventricular remodeling in pulmonary hypertension(American Physiological Society, 2018-03-01) Frump, Andrea L.; Bonnet, Sébastien; de Jesus Perez, Vinicio A.; Lahm, Tim; Medicine, School of MedicineRight ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased overload; however, with persistent and/or progressive afterload increase, this response frequently transitions to more pathological maladaptive remodeling. The mechanisms and disease processes underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches targeting angiogenesis in RV failure.Item Race and sex differences in response to endothelin receptor antagonists for pulmonary arterial hypertension(Elsevier, 2012-01) Gabler, Nicole B.; French, Benjamin; Strom, Brian L.; Liu, Ziyue; Palevsky, Harold I.; Taichman, Darren B.; Kawut, Steven M.; Halpern, Scott D.; Biostatistics, School of Public HealthBackground Recently studied therapies for pulmonary arterial hypertension (PAH) have improved outcomes among populations of patients, but little is known about which patients are most likely to respond to specific treatments. Differences in endothelin-1 biology between sexes and between whites and blacks may lead to differences in patients' responses to treatment with endothelin receptor antagonists (ERAs). Methods We conducted pooled analyses of deidentified, patient-level data from six randomized placebo-controlled trials of ERAs submitted to the US Food and Drug Administration to elucidate heterogeneity in treatment response. We estimated the interaction between treatment assignment (ERA vs placebo) and sex and between treatment and white or black race in terms of the change in 6-min walk distance from baseline to 12 weeks. Results Trials included 1,130 participants with a mean age of 49 years; 21% were men, 74% were white, and 6% were black. The placebo-adjusted response to ERAs was 29.7 m (95% CI, 3.7-55.7 m) greater in women than in men (P = .03). The placebo-adjusted response was 42.2 m for whites and −1.4 m for blacks, a difference of 43.6 m (95% CI, −3.5-90.7 m) (P = .07). Similar results were found in sensitivity analyses and in secondary analyses using the outcome of absolute distance walked. Conclusions Women with PAH obtain greater responses to ERAs than do men, and whites may experience a greater treatment benefit than do blacks. This heterogeneity in treatment-response may reflect pathophysiologic differences between sexes and races or distinct disease phenotypes.