- Browse by Subject
Browsing by Subject "Hyperplasia"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item 12-Lipoxygenase Promotes Obesity-Induced Oxidative Stress in Pancreatic Islets(American Society for Microbiology (ASM), 2014-10) Tersey, Sarah A.; Maier, Bernhard; Nishiki, Yurika; Maganti, Aarthi V.; Nadler, Jerry L.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of MedicineHigh-fat diets lead to obesity, inflammation, and dysglycemia. 12-Lipoxygenase (12-LO) is activated by high-fat diets and catalyzes the oxygenation of cellular arachidonic acid to form proinflammatory intermediates. We hypothesized that 12-LO in the pancreatic islet is sufficient to cause dysglycemia in the setting of high-fat feeding. To test this, we generated pancreas-specific 12-LO knockout mice and studied their metabolic and molecular adaptations to high-fat diets. Whereas knockout mice and control littermates displayed identical weight gain, body fat distribution, and macrophage infiltration into fat, knockout mice exhibited greater adaptive islet hyperplasia, improved insulin secretion, and complete protection from dysglycemia. At the molecular level, 12-LO deletion resulted in increases in islet antioxidant enzymes Sod1 and Gpx1 in response to high-fat feeding. The absence or inhibition of 12-LO led to increases in nuclear Nrf2, a transcription factor responsible for activation of genes encoding antioxidant enzymes. Our data reveal a novel pathway in which islet 12-LO suppresses antioxidant enzymes and prevents the adaptive islet responses in the setting of high-fat diets.Item Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition(Elsevier, 2017-04) Neto-Neves, Evandro M.; Brown, Mary B.; Zaretskaia, Maria V.; Rezania, Samin; Goodwill, Adam G.; McCarthy, Brian P.; Persohn, Scott A.; Territo, Paul R.; Kline, Jeffrey A.; Emergency Medicine, School of MedicineOur understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments.Item The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model(Wiley, 2017-07) Colinot, Darrelle L.; Garbuz, Tamila; Bosland, Maarten C.; Wang, Liang; Rice, Susan E.; Sullivan, William J., Jr.; Arrizabalaga, Gustavo; Jerde, Travis J.; Pharmacology and Toxicology, School of MedicineBACKGROUND: Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. METHODS: Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. RESULTS: We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. CONCLUSIONS: This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia.Item Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury(Elsevier, 2017-06) Bhatwadekar, Ashay D.; Beli, Eleni; Diao, Yanpeng; Chen, Jonathan; Luo, Qianyi; Alex, Alpha; Caballero, Sergio; Dominguez, James M., II; Salazar, Tatiana E.; Busik, Julia V.; Segal, Mark S.; Grant, Maria B.; Ophthalmology, School of MedicineThe brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1fx/fx;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1-positive, c-Kit-positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1fx/fx;Tek-Cre mice. The number of LSK cells from the Bmal1fx/fx;Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1fx/fx;Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.Item Dual Heterozygous Mutations in CYP21A2 and CYP11B1 in a Case of Nonclassic Congenital Adrenal Hyperplasia(Elsevier, 2022-10-21) Frontera, Eric D.; Brown, Joshua J.; Ghareebian, Hagop; Mariash, Cary; Medicine, School of MedicineBackground/objective: Nonclassic congenital adrenal hyperplasia (NCCAH) may be overlooked or mistaken for polycystic ovarian syndrome. Unlike congenital adrenal hyperplasia (CAH), the enzymatic activities of 21-hydroxylase or 11β-hydroxylase in NCCAH are not completely lost. In this case, NCCAH presented in a patient with CYP21A2 and CYP11B1 heterozygous mutations, one of which is a variant of unknown significance in CYP11B1. Case report: A 30-year-old woman presented with a chief complaint of irregular menses and hirsutism. Previous medical history was significant for a prolactin level of 34.7 ng/mL (reference range, 2.0-23.0 ng/mL), a total serum testosterone level of 77 ng/dL (reference range, 25-125 ng/dL, not sex-specific), and a 2-mm × 3-mm pituitary lesion. An adrenocorticotrophic hormone stimulation test increased the 17-hydroxyprogesterone level from 444 ng/dL at baseline to 837 ng/dL at 60 minutes (baseline female reference range and stimulated reference ranges are 10-300 ng/dL and <1000 ng/dL, respectively). Gene sequencing revealed a heterozygous pathogenic CYP21A2 variant and a heterozygous, previously undescribed variant of unknown significance in CYP11B1. Discussion: Unlike CAH, NCCAH presents more subtly and later in life, and salt wasting and hypertension are not typically seen. Although mutations in CYP11B1 that cause steroid 11β-hydroxylase deficiency more commonly lead to the CAH phenotype, cases have been reported of CYP11B1 mutations leading to NCCAH, depending on the location of the mutations. Conclusion: This patient's case demonstrates physical examination and laboratory findings suggestive of NCCAH. Our case adds to the database of described mutations in CYP11B1 and suggests that heterozygous mutations in 2 different genes may present phenotypically as NCCAH.Item The function of ASCL1 in pregnancy-induced maternal liver growth(2014) Lee, Joonyong; Dai, Guoli; Belecky-Adams, Teri; Meyer, Jason S.The maternal liver shows marked growth during pregnancy to accommodate the development and metabolic needs of the placenta and fetus. Previous study has shown that the maternal liver grows proportionally to the increase in body weight during gestation by hyperplasia and hypertrophy of hepatocytes. As the maternal liver is enlarged, the transcript level of Ascl1, a transcription factor essential to progenitor cells of the central nervous system and peripheral nervous system, is highly upregulated. The aims of the study were to (1) identify hepatic Ascl1-expressing cells, and (2) study the functions of Ascl1 in maternal liver during pregnancy. In situ hybridization shows that most cell types (parenchymal, nonparenchymal, and mesothelial cells) express Ascl1 mRNA in maternal livers during gestation and in male regenerating livers. Notably, hepatic mesothelial cells abundantly express Ascl1 during pregnancy and liver regeneration. Inducible ablation of Ascl1 gene during pregnancy results in maternal liver enlargement, litter size reduction, and fetal growth retardation. In addition, maternal hepatocytes deficient in Ascl1 gene lack majority of their cytosols and exhibit β-catenin nuclear translocation, while maintaining their cellular boundary and identity. In summary, in both maternal liver during pregnancy and regenerating liver, the expression of Ascl1 is induced in most cell types. Mesothelial cells are potential origin of Ascl1-expressing cells. Ascl1 gene is essential for the progression of normal pregnancyItem Systematic review with meta-analysis: neoplasia detection rate and post-endoscopy Barrett’s neoplasia in Barrett’s oesophagus(Wiley, 2021) Hamade, Nour; Kamboj, Amrit K.; Krishnamoorthi, Rajesh; Singh, Siddharth; Hassett, Leslie C.; Katzka, David A.; Kahi, Charles J.; Fatima, Hala; Iyer, Prasad G.; Medicine, School of MedicineBackground: Neoplasia detection rate, the proportion of Barrett's oesophagus patients with high-grade dysplasia or oesophageal adenocarcinoma detected at index surveillance endoscopy has been proposed as a quality metric. However, the correlation between neoplasia detection rate and a clinically relevant outcome like post-endoscopy Barrett's neoplasia remains unknown. Post-endoscopy Barrett's neoplasia refers to the rate of high-grade dysplasia or oesophageal adenocarcinoma on repeat endoscopy within one year of an index screening examination revealing non-dysplastic Barrett's oesophagus or low-grade dysplasia. Aim: To assess correlation between neoplasia detection rate and post-endoscopy Barrett's neoplasia. Methods: We performed a systematic search of multiple databases from date of inception to June 2021 to identify cohort studies reporting both neoplasia detection rate and post-endoscopy Barrett's neoplasia. Data from each study were pooled using a random effects model, and their correlation assessed using meta-regression. Heterogeneity was assessed and a priori planned subgroup analyses were conducted. Results: Ten studies with 27 894 patients with Barrett's oesophagus were included. The pooled neoplasia detection rate and post-endoscopy Barrett's neoplasia were 5.0% (95% CI: 3.4%-7.1%, I2 = 97%) and 19.6% (95% CI: 10.1%-34.7%, I2 = 96%), respectively. Meta-regression revealed a statistically significant inverse relationship between the two variables (coefficient -3.50, 95% CI: -4.63 to -2.37, P < 0.01). With every 1% increase of neoplasia detection rate, post-endoscopy Barrett's neoplasia decreased by 3.50%. Heterogeneity was high despite adjusting for study quality and performing several subgroup analyses. Conclusion: We observed a statistically significant inverse correlation between neoplasia detection rate and post-endoscopy Barrett's neoplasia. Additional studies are needed to further validate this correlation.