- Browse by Subject
Browsing by Subject "Hyperoxia"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item All trans-retinoic acid modulates hyperoxia-induced suppression of NF-kB-dependent Wnt signaling in alveolar A549 epithelial cells(Public Library of Science, 2022-08-10) Tsotakos, Nikolaos; Ahmed, Imtiaz; Umstead, Todd M.; Imamura, Yuka; Yau, Eric; Silveyra, Patricia; Chroneos, Zissis C.; Medicine, School of MedicineIntroduction: Despite recent advances in perinatal medicine, bronchopulmonary dysplasia (BPD) remains the most common complication of preterm birth. Inflammation, the main cause for BPD, results in arrested alveolarization. All trans-retinoic acid (ATRA), the active metabolite of Vitamin A, facilitates recovery from hyperoxia induced cell damage. The mechanisms involved in this response, and the genes activated, however, are poorly understood. In this study, we investigated the mechanisms of action of ATRA in human lung epithelial cells exposed to hyperoxia. We hypothesized that ATRA reduces hyperoxia-induced inflammatory responses in A549 alveolar epithelial cells. Methods: A549 cells were exposed to hyperoxia with or without treatment with ATRA, followed by RNA-seq analysis. Results: Transcriptomic analysis of A549 cells revealed ~2,000 differentially expressed genes with a higher than 2-fold change. Treatment of cells with ATRA alleviated some of the hyperoxia-induced changes, including Wnt signaling, cell adhesion and cytochrome P450 genes, partially through NF-κB signaling. Discussion/conclusion: Our findings support the idea that ATRA supplementation may decrease hyperoxia-induced disruption of the neonatal respiratory epithelium and alleviate development of BPD.Item Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia(Wiley, 2014-03) Ahlfeld, Shawn K.; Conway, Simon J.; Department of Medicine, IU School of MedicineBronchopulmonary dysplasia (BPD) is a chronic lung disease of extreme prematurity and is defined clinically by dependence on supplemental oxygen due to impaired gas exchange. Optimal gas exchange is dependent on the development of a sufficient surface area for diffusion. In the mammalian lung, rapid acquisition of distal lung surface area is accomplished in neonatal and early adult life by means of vascularization and secondary septation of distal lung airspaces. Extreme preterm birth interrupts secondary septation and pulmonary capillary development and ultimately reduces the efficiency of the alveolar-capillary membrane. Although pulmonary health in BPD infants rapidly improves over the first few years, persistent alveolar-capillary membrane dysfunction continues into adolescence and adulthood. Preventative therapies have been largely ineffective, and therapies aimed at promoting normal development of the air-blood barrier in infants with established BPD remain largely unexplored. The purpose of this review will be: (1) to summarize the histological evidence of aberrant alveolar-capillary membrane development associated with extreme preterm birth and BPD, (2) to review the clinical evidence assessing the long-term impact of BPD on alveolar-capillary membrane function, and (3) to discuss the need to develop and incorporate direct measurements of functional gas exchange into clinically relevant animal models of inhibited alveolar development.Item Association Between Early Hyperoxia Exposure After Resuscitation From Cardiac Arrest and Neurological Disability: Prospective Multicenter Protocol-Directed Cohort Study(American Heart Association, 2018-05-15) Roberts, Brian W.; Kilgannon, J. Hope; Hunter, Benton R.; Puskarich, Michael A.; Pierce, Lisa; Donnino, Michael; Leary, Marion; Kline, Jeffrey A.; Jones, Alan E.; Shapiro, Nathan I.; Abella, Benjamin S.; Trzeciak, Stephen; Emergency Medicine, School of MedicineBACKGROUND: Studies examining the association between hyperoxia exposure after resuscitation from cardiac arrest and clinical outcomes have reported conflicting results. Our objective was to test the hypothesis that early postresuscitation hyperoxia is associated with poor neurological outcome. METHODS: This was a multicenter prospective cohort study. We included adult patients with cardiac arrest who were mechanically ventilated and received targeted temperature management after return of spontaneous circulation. We excluded patients with cardiac arrest caused by trauma or sepsis. Per protocol, partial pressure of arterial oxygen (Pao2) was measured at 1 and 6 hours after return of spontaneous circulation. Hyperoxia was defined as a Pao2 >300 mm Hg during the initial 6 hours after return of spontaneous circulation. The primary outcome was poor neurological function at hospital discharge, defined as a modified Rankin Scale score >3. Multivariable generalized linear regression with a log link was used to test the association between Pao2 and poor neurological outcome. To assess whether there was an association between other supranormal Pao2 levels and poor neurological outcome, we used other Pao2 cut points to define hyperoxia (ie, 100, 150, 200, 250, 350, 400 mm Hg). RESULTS: Of the 280 patients included, 105 (38%) had exposure to hyperoxia. Poor neurological function at hospital discharge occurred in 70% of patients in the entire cohort and in 77% versus 65% among patients with versus without exposure to hyperoxia respectively (absolute risk difference, 12%; 95% confidence interval, 1-23). Hyperoxia was independently associated with poor neurological function (relative risk, 1.23; 95% confidence interval, 1.11-1.35). On multivariable analysis, a 1-hour-longer duration of hyperoxia exposure was associated with a 3% increase in risk of poor neurological outcome (relative risk, 1.03; 95% confidence interval, 1.02-1.05). We found that the association with poor neurological outcome began at ≥300 mm Hg. CONCLUSIONS: Early hyperoxia exposure after resuscitation from cardiac arrest was independently associated with poor neurological function at hospital discharge.Item Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure(American Physiological Society, 2015-04-15) Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.; Lahm, Tim; Department of Medicine, IU School of MedicineThe development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults.Item A shift from glycolytic and fatty acid derivatives toward one-carbon metabolites in the developing lung during transitions of the early postnatal period(American Physiological Society, 2021) Lee, Daniel D.; Park, Sang Jun; Zborek, Kirsten L.; Schwarz, Margaret A.; Pediatrics, School of MedicineDuring postnatal lung development, metabolic changes that coincide with stages of alveolar formation are poorly understood. Responding to developmental and environmental factors, metabolic changes can be rapidly and adaptively altered. The objective of the present study was to determine biological and technical determinants of metabolic changes during postnatal lung development. Over 118 metabolic features were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, Sciex QTRAP 5500 Triple Quadrupole). Biological determinants of metabolic changes were the transition from the postnatal saccular to alveolar stages and exposure to 85% hyperoxia, an environmental insult. Technical determinants of metabolic identification were brevity and temperature of harvesting, both of which improved metabolic preservation within samples. Multivariate statistical analyses revealed the transition between stages of lung development as the period of major metabolic alteration. Of three distinctive groups that clustered by age, the saccular stage was identified by its enrichment of both glycolytic and fatty acid derivatives. The critical transition between stages of development were denoted by changes in amino acid derivatives. Of the amino acid derivatives that significantly changed, a majority were linked to metabolites of the one-carbon metabolic pathway. The enrichment of one-carbon metabolites was independent of age and environmental insult. Temperature was also found to significantly influence the metabolic levels within the postmortem sampled lung, which underscored the importance of methodology. Collectively, these data support not only distinctive stages of metabolic change but also highlight amino acid metabolism, in particular one-carbon metabolites as metabolic signatures of the early postnatal lung.